# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Solves optimal operation and capacity for a network with the option to iteratively optimize while updating line reactances. This script is used for optimizing the electrical network as well as the sector coupled network. Description ----------- Total annual system costs are minimised with PyPSA. The full formulation of the linear optimal power flow (plus investment planning is provided in the `documentation of PyPSA `_. The optimization is based on the :func:`network.optimize` function. Additionally, some extra constraints specified in :mod:`solve_network` are added. .. note:: The rules ``solve_elec_networks`` and ``solve_sector_networks`` run the workflow for all scenarios in the configuration file (``scenario:``) based on the rule :mod:`solve_network`. """ import logging import re import numpy as np import pandas as pd import pypsa import xarray as xr from _benchmark import memory_logger from _helpers import configure_logging, update_config_with_sector_opts from pypsa.descriptors import get_activity_mask logger = logging.getLogger(__name__) pypsa.pf.logger.setLevel(logging.WARNING) from pypsa.descriptors import get_switchable_as_dense as get_as_dense from prepare_sector_network import emission_sectors_from_opts def add_land_use_constraint(n, planning_horizons, config): if "m" in snakemake.wildcards.clusters: _add_land_use_constraint_m(n, planning_horizons, config) else: _add_land_use_constraint(n) def add_land_use_constraint_perfect(n): """ Add global constraints for tech capacity limit. """ logger.info("Add land-use constraint for perfect foresight") def compress_series(s): def process_group(group): if group.nunique() == 1: return pd.Series(group.iloc[0], index=[None]) else: return group return s.groupby(level=[0, 1]).apply(process_group) def new_index_name(t): # Convert all elements to string and filter out None values parts = [str(x) for x in t if x is not None] # Join with space, but use a dash for the last item if not None return " ".join(parts[:2]) + (f"-{parts[-1]}" if len(parts) > 2 else "") def check_p_min_p_max(p_nom_max): p_nom_min = n.generators[ext_i].groupby(grouper).sum().p_nom_min p_nom_min = p_nom_min.reindex(p_nom_max.index) check = ( p_nom_min.groupby(level=[0, 1]).sum() > p_nom_max.groupby(level=[0, 1]).min() ) if check.sum(): logger.warning( f"summed p_min_pu values at node larger than technical potential {check[check].index}" ) grouper = [n.generators.carrier, n.generators.bus, n.generators.build_year] ext_i = n.generators.p_nom_extendable # get technical limit per node and investment period p_nom_max = n.generators[ext_i].groupby(grouper).min().p_nom_max # drop carriers without tech limit p_nom_max = p_nom_max[~p_nom_max.isin([np.inf, np.nan])] # carrier carriers = p_nom_max.index.get_level_values(0).unique() gen_i = n.generators[(n.generators.carrier.isin(carriers)) & (ext_i)].index n.generators.loc[gen_i, "p_nom_min"] = 0 # check minimum capacities check_p_min_p_max(p_nom_max) # drop multi entries in case p_nom_max stays constant in different periods # p_nom_max = compress_series(p_nom_max) # adjust name to fit syntax of nominal constraint per bus df = p_nom_max.reset_index() df["name"] = df.apply( lambda row: f"nom_max_{row['carrier']}" + (f"_{row['build_year']}" if row["build_year"] is not None else ""), axis=1, ) for name in df.name.unique(): df_carrier = df[df.name == name] bus = df_carrier.bus n.buses.loc[bus, name] = df_carrier.p_nom_max.values return n def _add_land_use_constraint(n): # warning: this will miss existing offwind which is not classed AC-DC and has carrier 'offwind' for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]: extendable_i = (n.generators.carrier == carrier) & n.generators.p_nom_extendable n.generators.loc[extendable_i, "p_nom_min"] = 0 ext_i = (n.generators.carrier == carrier) & ~n.generators.p_nom_extendable existing = ( n.generators.loc[ext_i, "p_nom"] .groupby(n.generators.bus.map(n.buses.location)) .sum() ) existing.index += " " + carrier + "-" + snakemake.wildcards.planning_horizons n.generators.loc[existing.index, "p_nom_max"] -= existing # check if existing capacities are larger than technical potential existing_large = n.generators[ n.generators["p_nom_min"] > n.generators["p_nom_max"] ].index if len(existing_large): logger.warning( f"Existing capacities larger than technical potential for {existing_large},\ adjust technical potential to existing capacities" ) n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[ existing_large, "p_nom_min" ] n.generators.p_nom_max.clip(lower=0, inplace=True) def _add_land_use_constraint_m(n, planning_horizons, config): # if generators clustering is lower than network clustering, land_use accounting is at generators clusters grouping_years = config["existing_capacities"]["grouping_years"] current_horizon = snakemake.wildcards.planning_horizons for carrier in ["solar", "onwind", "offwind-ac", "offwind-dc"]: existing = n.generators.loc[n.generators.carrier == carrier, "p_nom"] ind = list( {i.split(sep=" ")[0] + " " + i.split(sep=" ")[1] for i in existing.index} ) previous_years = [ str(y) for y in planning_horizons + grouping_years if y < int(snakemake.wildcards.planning_horizons) ] for p_year in previous_years: ind2 = [ i for i in ind if i + " " + carrier + "-" + p_year in existing.index ] sel_current = [i + " " + carrier + "-" + current_horizon for i in ind2] sel_p_year = [i + " " + carrier + "-" + p_year for i in ind2] n.generators.loc[sel_current, "p_nom_max"] -= existing.loc[ sel_p_year ].rename(lambda x: x[:-4] + current_horizon) n.generators.p_nom_max.clip(lower=0, inplace=True) def add_co2_sequestration_limit(n, config, limit=200): """ Add a global constraint on the amount of Mt CO2 that can be sequestered. """ n.carriers.loc["co2 stored", "co2_absorptions"] = -1 n.carriers.co2_absorptions = n.carriers.co2_absorptions.fillna(0) limit = limit * 1e6 for o in opts: if "seq" not in o: continue limit = float(o[o.find("seq") + 3 :]) * 1e6 break if not n.investment_periods.empty: periods = n.investment_periods names = pd.Index([f"co2_sequestration_limit-{period}" for period in periods]) else: periods = [np.nan] names = pd.Index(["co2_sequestration_limit"]) n.madd( "GlobalConstraint", names, sense="<=", constant=limit, type="primary_energy", carrier_attribute="co2_absorptions", investment_period=periods, ) def add_carbon_constraint(n, snapshots): glcs = n.global_constraints.query('type == "co2_limit"') if glcs.empty: return for name, glc in glcs.iterrows(): carattr = glc.carrier_attribute emissions = n.carriers.query(f"{carattr} != 0")[carattr] if emissions.empty: continue # stores n.stores["carrier"] = n.stores.bus.map(n.buses.carrier) stores = n.stores.query("carrier in @emissions.index and not e_cyclic") if not stores.empty: last = n.snapshot_weightings.reset_index().groupby("period").last() last_i = last.set_index([last.index, last.timestep]).index final_e = n.model["Store-e"].loc[last_i, stores.index] time_valid = int(glc.loc["investment_period"]) time_i = pd.IndexSlice[time_valid, :] lhs = final_e.loc[time_i, :] - final_e.shift(snapshot=1).loc[time_i, :] rhs = glc.constant n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}") def add_carbon_budget_constraint(n, snapshots): glcs = n.global_constraints.query('type == "Co2Budget"') if glcs.empty: return for name, glc in glcs.iterrows(): carattr = glc.carrier_attribute emissions = n.carriers.query(f"{carattr} != 0")[carattr] if emissions.empty: continue # stores n.stores["carrier"] = n.stores.bus.map(n.buses.carrier) stores = n.stores.query("carrier in @emissions.index and not e_cyclic") if not stores.empty: last = n.snapshot_weightings.reset_index().groupby("period").last() last_i = last.set_index([last.index, last.timestep]).index final_e = n.model["Store-e"].loc[last_i, stores.index] time_valid = int(glc.loc["investment_period"]) time_i = pd.IndexSlice[time_valid, :] weighting = n.investment_period_weightings.loc[time_valid, "years"] lhs = final_e.loc[time_i, :] * weighting rhs = glc.constant n.model.add_constraints(lhs <= rhs, name=f"GlobalConstraint-{name}") def add_max_growth(n, config): """ Add maximum growth rates for different carriers. """ opts = snakemake.params["sector"]["limit_max_growth"] # take maximum yearly difference between investment periods since historic growth is per year factor = n.investment_period_weightings.years.max() * opts["factor"] for carrier in opts["max_growth"].keys(): max_per_period = opts["max_growth"][carrier] * factor logger.info( f"set maximum growth rate per investment period of {carrier} to {max_per_period} GW." ) n.carriers.loc[carrier, "max_growth"] = max_per_period * 1e3 for carrier in opts["max_relative_growth"].keys(): max_r_per_period = opts["max_relative_growth"][carrier] logger.info( f"set maximum relative growth per investment period of {carrier} to {max_r_per_period}." ) n.carriers.loc[carrier, "max_relative_growth"] = max_r_per_period return n def add_retrofit_gas_boiler_constraint(n, snapshots): """ Allow retrofitting of existing gas boilers to H2 boilers. """ c = "Link" logger.info("Add constraint for retrofitting gas boilers to H2 boilers.") # existing gas boilers mask = n.links.carrier.str.contains("gas boiler") & ~n.links.p_nom_extendable gas_i = n.links[mask].index mask = n.links.carrier.str.contains("retrofitted H2 boiler") h2_i = n.links[mask].index n.links.loc[gas_i, "p_nom_extendable"] = True p_nom = n.links.loc[gas_i, "p_nom"] n.links.loc[gas_i, "p_nom"] = 0 # heat profile cols = n.loads_t.p_set.columns[ n.loads_t.p_set.columns.str.contains("heat") & ~n.loads_t.p_set.columns.str.contains("industry") & ~n.loads_t.p_set.columns.str.contains("agriculture") ] profile = n.loads_t.p_set[cols].div( n.loads_t.p_set[cols].groupby(level=0).max(), level=0 ) # to deal if max value is zero profile.fillna(0, inplace=True) profile.rename(columns=n.loads.bus.to_dict(), inplace=True) profile = profile.reindex(columns=n.links.loc[gas_i, "bus1"]) profile.columns = gas_i rhs = profile.mul(p_nom) dispatch = n.model["Link-p"] active = get_activity_mask(n, c, snapshots, gas_i) rhs = rhs[active] p_gas = dispatch.sel(Link=gas_i) p_h2 = dispatch.sel(Link=h2_i) lhs = p_gas + p_h2 n.model.add_constraints(lhs == rhs, name="gas_retrofit") def prepare_network( n, solve_opts=None, config=None, foresight=None, planning_horizons=None, co2_sequestration_potential=None, ): if "clip_p_max_pu" in solve_opts: for df in ( n.generators_t.p_max_pu, n.generators_t.p_min_pu, n.storage_units_t.inflow, ): df.where(df > solve_opts["clip_p_max_pu"], other=0.0, inplace=True) if load_shedding := solve_opts.get("load_shedding"): # intersect between macroeconomic and surveybased willingness to pay # http://journal.frontiersin.org/article/10.3389/fenrg.2015.00055/full # TODO: retrieve color and nice name from config n.add("Carrier", "load", color="#dd2e23", nice_name="Load shedding") buses_i = n.buses.query("carrier == 'AC'").index if not np.isscalar(load_shedding): # TODO: do not scale via sign attribute (use Eur/MWh instead of Eur/kWh) load_shedding = 1e2 # Eur/kWh n.madd( "Generator", buses_i, " load", bus=buses_i, carrier="load", sign=1e-3, # Adjust sign to measure p and p_nom in kW instead of MW marginal_cost=load_shedding, # Eur/kWh p_nom=1e9, # kW ) if solve_opts.get("noisy_costs"): for t in n.iterate_components(): # if 'capital_cost' in t.df: # t.df['capital_cost'] += 1e1 + 2.*(np.random.random(len(t.df)) - 0.5) if "marginal_cost" in t.df: t.df["marginal_cost"] += 1e-2 + 2e-3 * ( np.random.random(len(t.df)) - 0.5 ) for t in n.iterate_components(["Line", "Link"]): t.df["capital_cost"] += ( 1e-1 + 2e-2 * (np.random.random(len(t.df)) - 0.5) ) * t.df["length"] if solve_opts.get("nhours"): nhours = solve_opts["nhours"] n.set_snapshots(n.snapshots[:nhours]) n.snapshot_weightings[:] = 8760.0 / nhours if foresight == "myopic": add_land_use_constraint(n, planning_horizons, config) if foresight == "perfect": n = add_land_use_constraint_perfect(n) if snakemake.params["sector"]["limit_max_growth"]["enable"]: n = add_max_growth(n, config) if n.stores.carrier.eq("co2 stored").any(): limit = co2_sequestration_potential add_co2_sequestration_limit(n, config, limit=limit) return n def add_CCL_constraints(n, config): """ Add CCL (country & carrier limit) constraint to the network. Add minimum and maximum levels of generator nominal capacity per carrier for individual countries. Opts and path for agg_p_nom_minmax.csv must be defined in config.yaml. Default file is available at data/agg_p_nom_minmax.csv. Parameters ---------- n : pypsa.Network config : dict Example ------- scenario: opts: [Co2L-CCL-24H] electricity: agg_p_nom_limits: data/agg_p_nom_minmax.csv """ agg_p_nom_minmax = pd.read_csv( config["electricity"]["agg_p_nom_limits"], index_col=[0, 1] ) logger.info("Adding generation capacity constraints per carrier and country") p_nom = n.model["Generator-p_nom"] gens = n.generators.query("p_nom_extendable").rename_axis(index="Generator-ext") grouper = pd.concat([gens.bus.map(n.buses.country), gens.carrier]) lhs = p_nom.groupby(grouper).sum().rename(bus="country") minimum = xr.DataArray(agg_p_nom_minmax["min"].dropna()).rename(dim_0="group") index = minimum.indexes["group"].intersection(lhs.indexes["group"]) if not index.empty: n.model.add_constraints( lhs.sel(group=index) >= minimum.loc[index], name="agg_p_nom_min" ) maximum = xr.DataArray(agg_p_nom_minmax["max"].dropna()).rename(dim_0="group") index = maximum.indexes["group"].intersection(lhs.indexes["group"]) if not index.empty: n.model.add_constraints( lhs.sel(group=index) <= maximum.loc[index], name="agg_p_nom_max" ) def add_EQ_constraints(n, o, scaling=1e-1): """ Add equity constraints to the network. Currently this is only implemented for the electricity sector only. Opts must be specified in the config.yaml. Parameters ---------- n : pypsa.Network o : str Example ------- scenario: opts: [Co2L-EQ0.7-24H] Require each country or node to on average produce a minimal share of its total electricity consumption itself. Example: EQ0.7c demands each country to produce on average at least 70% of its consumption; EQ0.7 demands each node to produce on average at least 70% of its consumption. """ # TODO: Generalize to cover myopic and other sectors? float_regex = "[0-9]*\.?[0-9]+" level = float(re.findall(float_regex, o)[0]) if o[-1] == "c": ggrouper = n.generators.bus.map(n.buses.country) lgrouper = n.loads.bus.map(n.buses.country) sgrouper = n.storage_units.bus.map(n.buses.country) else: ggrouper = n.generators.bus lgrouper = n.loads.bus sgrouper = n.storage_units.bus load = ( n.snapshot_weightings.generators @ n.loads_t.p_set.groupby(lgrouper, axis=1).sum() ) inflow = ( n.snapshot_weightings.stores @ n.storage_units_t.inflow.groupby(sgrouper, axis=1).sum() ) inflow = inflow.reindex(load.index).fillna(0.0) rhs = scaling * (level * load - inflow) p = n.model["Generator-p"] lhs_gen = ( (p * (n.snapshot_weightings.generators * scaling)) .groupby(ggrouper.to_xarray()) .sum() .sum("snapshot") ) # TODO: double check that this is really needed, why do have to subtract the spillage if not n.storage_units_t.inflow.empty: spillage = n.model["StorageUnit-spill"] lhs_spill = ( (spillage * (-n.snapshot_weightings.stores * scaling)) .groupby(sgrouper.to_xarray()) .sum() .sum("snapshot") ) lhs = lhs_gen + lhs_spill else: lhs = lhs_gen n.model.add_constraints(lhs >= rhs, name="equity_min") def add_BAU_constraints(n, config): """ Add a per-carrier minimal overall capacity. BAU_mincapacities and opts must be adjusted in the config.yaml. Parameters ---------- n : pypsa.Network config : dict Example ------- scenario: opts: [Co2L-BAU-24H] electricity: BAU_mincapacities: solar: 0 onwind: 0 OCGT: 100000 offwind-ac: 0 offwind-dc: 0 Which sets minimum expansion across all nodes e.g. in Europe to 100GW. OCGT bus 1 + OCGT bus 2 + ... > 100000 """ mincaps = pd.Series(config["electricity"]["BAU_mincapacities"]) p_nom = n.model["Generator-p_nom"] ext_i = n.generators.query("p_nom_extendable") ext_carrier_i = xr.DataArray(ext_i.carrier.rename_axis("Generator-ext")) lhs = p_nom.groupby(ext_carrier_i).sum() index = mincaps.index.intersection(lhs.indexes["carrier"]) rhs = mincaps[index].rename_axis("carrier") n.model.add_constraints(lhs >= rhs, name="bau_mincaps") # TODO: think about removing or make per country def add_SAFE_constraints(n, config): """ Add a capacity reserve margin of a certain fraction above the peak demand. Renewable generators and storage do not contribute. Ignores network. Parameters ---------- n : pypsa.Network config : dict Example ------- config.yaml requires to specify opts: scenario: opts: [Co2L-SAFE-24H] electricity: SAFE_reservemargin: 0.1 Which sets a reserve margin of 10% above the peak demand. """ peakdemand = n.loads_t.p_set.sum(axis=1).max() margin = 1.0 + config["electricity"]["SAFE_reservemargin"] reserve_margin = peakdemand * margin conventional_carriers = config["electricity"]["conventional_carriers"] ext_gens_i = n.generators.query( "carrier in @conventional_carriers & p_nom_extendable" ).index p_nom = n.model["Generator-p_nom"].loc[ext_gens_i] lhs = p_nom.sum() exist_conv_caps = n.generators.query( "~p_nom_extendable & carrier in @conventional_carriers" ).p_nom.sum() rhs = reserve_margin - exist_conv_caps n.model.add_constraints(lhs >= rhs, name="safe_mintotalcap") def add_operational_reserve_margin(n, sns, config): """ Build reserve margin constraints based on the formulation given in https://genxproject.github.io/GenX/dev/core/#Reserves. Parameters ---------- n : pypsa.Network sns: pd.DatetimeIndex config : dict Example: -------- config.yaml requires to specify operational_reserve: operational_reserve: # like https://genxproject.github.io/GenX/dev/core/#Reserves activate: true epsilon_load: 0.02 # percentage of load at each snapshot epsilon_vres: 0.02 # percentage of VRES at each snapshot contingency: 400000 # MW """ reserve_config = config["electricity"]["operational_reserve"] EPSILON_LOAD = reserve_config["epsilon_load"] EPSILON_VRES = reserve_config["epsilon_vres"] CONTINGENCY = reserve_config["contingency"] # Reserve Variables n.model.add_variables( 0, np.inf, coords=[sns, n.generators.index], name="Generator-r" ) reserve = n.model["Generator-r"] summed_reserve = reserve.sum("Generator") # Share of extendable renewable capacities ext_i = n.generators.query("p_nom_extendable").index vres_i = n.generators_t.p_max_pu.columns if not ext_i.empty and not vres_i.empty: capacity_factor = n.generators_t.p_max_pu[vres_i.intersection(ext_i)] p_nom_vres = ( n.model["Generator-p_nom"] .loc[vres_i.intersection(ext_i)] .rename({"Generator-ext": "Generator"}) ) lhs = summed_reserve + (p_nom_vres * (-EPSILON_VRES * capacity_factor)).sum( "Generator" ) # Total demand per t demand = get_as_dense(n, "Load", "p_set").sum(axis=1) # VRES potential of non extendable generators capacity_factor = n.generators_t.p_max_pu[vres_i.difference(ext_i)] renewable_capacity = n.generators.p_nom[vres_i.difference(ext_i)] potential = (capacity_factor * renewable_capacity).sum(axis=1) # Right-hand-side rhs = EPSILON_LOAD * demand + EPSILON_VRES * potential + CONTINGENCY n.model.add_constraints(lhs >= rhs, name="reserve_margin") # additional constraint that capacity is not exceeded gen_i = n.generators.index ext_i = n.generators.query("p_nom_extendable").index fix_i = n.generators.query("not p_nom_extendable").index dispatch = n.model["Generator-p"] reserve = n.model["Generator-r"] capacity_variable = n.model["Generator-p_nom"].rename( {"Generator-ext": "Generator"} ) capacity_fixed = n.generators.p_nom[fix_i] p_max_pu = get_as_dense(n, "Generator", "p_max_pu") lhs = dispatch + reserve - capacity_variable * p_max_pu[ext_i] rhs = (p_max_pu[fix_i] * capacity_fixed).reindex(columns=gen_i, fill_value=0) n.model.add_constraints(lhs <= rhs, name="Generator-p-reserve-upper") def add_battery_constraints(n): """ Add constraint ensuring that charger = discharger, i.e. 1 * charger_size - efficiency * discharger_size = 0 """ if not n.links.p_nom_extendable.any(): return discharger_bool = n.links.index.str.contains("battery discharger") charger_bool = n.links.index.str.contains("battery charger") dischargers_ext = n.links[discharger_bool].query("p_nom_extendable").index chargers_ext = n.links[charger_bool].query("p_nom_extendable").index eff = n.links.efficiency[dischargers_ext].values lhs = ( n.model["Link-p_nom"].loc[chargers_ext] - n.model["Link-p_nom"].loc[dischargers_ext] * eff ) n.model.add_constraints(lhs == 0, name="Link-charger_ratio") def add_chp_constraints(n): electric = ( n.links.index.str.contains("urban central") & n.links.index.str.contains("CHP") & n.links.index.str.contains("electric") ) heat = ( n.links.index.str.contains("urban central") & n.links.index.str.contains("CHP") & n.links.index.str.contains("heat") ) electric_ext = n.links[electric].query("p_nom_extendable").index heat_ext = n.links[heat].query("p_nom_extendable").index electric_fix = n.links[electric].query("~p_nom_extendable").index heat_fix = n.links[heat].query("~p_nom_extendable").index p = n.model["Link-p"] # dimension: [time, link] # output ratio between heat and electricity and top_iso_fuel_line for extendable if not electric_ext.empty: p_nom = n.model["Link-p_nom"] lhs = ( p_nom.loc[electric_ext] * (n.links.p_nom_ratio * n.links.efficiency)[electric_ext].values - p_nom.loc[heat_ext] * n.links.efficiency[heat_ext].values ) n.model.add_constraints(lhs == 0, name="chplink-fix_p_nom_ratio") rename = {"Link-ext": "Link"} lhs = ( p.loc[:, electric_ext] + p.loc[:, heat_ext] - p_nom.rename(rename).loc[electric_ext] ) n.model.add_constraints(lhs <= 0, name="chplink-top_iso_fuel_line_ext") # top_iso_fuel_line for fixed if not electric_fix.empty: lhs = p.loc[:, electric_fix] + p.loc[:, heat_fix] rhs = n.links.p_nom[electric_fix] n.model.add_constraints(lhs <= rhs, name="chplink-top_iso_fuel_line_fix") # back-pressure if not electric.empty: lhs = ( p.loc[:, heat] * (n.links.efficiency[heat] * n.links.c_b[electric].values) - p.loc[:, electric] * n.links.efficiency[electric] ) n.model.add_constraints(lhs <= rhs, name="chplink-backpressure") def add_pipe_retrofit_constraint(n): """ Add constraint for retrofitting existing CH4 pipelines to H2 pipelines. """ gas_pipes_i = n.links.query("carrier == 'gas pipeline' and p_nom_extendable").index h2_retrofitted_i = n.links.query( "carrier == 'H2 pipeline retrofitted' and p_nom_extendable" ).index if h2_retrofitted_i.empty or gas_pipes_i.empty: return p_nom = n.model["Link-p_nom"] CH4_per_H2 = 1 / n.config["sector"]["H2_retrofit_capacity_per_CH4"] lhs = p_nom.loc[gas_pipes_i] + CH4_per_H2 * p_nom.loc[h2_retrofitted_i] rhs = n.links.p_nom[gas_pipes_i].rename_axis("Link-ext") n.model.add_constraints(lhs == rhs, name="Link-pipe_retrofit") def add_co2limit_country(n, limit_countries, nyears=1.0): """ Add a set of emissions limit constraints for specified countries. The countries and emissions limits are specified in the config file entry 'co2_budget_country_{investment_year}'. Parameters ---------- n : pypsa.Network config : dict limit_countries : dict nyears: float, optional Used to scale the emissions constraint to the number of snapshots of the base network. """ logger.info(f"Adding CO2 budget limit for each country as per unit of 1990 levels") countries = n.config["countries"] # TODO: import function from prepare_sector_network? Move to common place? sectors = emission_sectors_from_opts(opts) # convert Mt to tCO2 co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) co2_limit_countries = co2_totals.loc[countries, sectors].sum(axis=1) co2_limit_countries = co2_limit_countries.loc[co2_limit_countries.index.isin(limit_countries.keys())] co2_limit_countries *= co2_limit_countries.index.map(limit_countries) * nyears p = n.model["Link-p"] # dimension: (time, component) # NB: Most country-specific links retain their locational information in bus1 (except for DAC, where it is in bus2) country = n.links.bus1.map(n.buses.location).map(n.buses.country) country_DAC = ( n.links[n.links.carrier == "DAC"] .bus2.map(n.buses.location) .map(n.buses.country) ) country[country_DAC.index] = country_DAC lhs = [] for port in [col[3:] for col in n.links if col.startswith("bus")]: if port == str(0): efficiency = ( n.links["efficiency"].apply(lambda x: 1.0).rename("efficiency0") ) elif port == str(1): efficiency = n.links["efficiency"] else: efficiency = n.links[f"efficiency{port}"] mask = n.links[f"bus{port}"].map(n.buses.carrier).eq("co2") idx = n.links[mask].index grouping = country.loc[idx] if not grouping.isnull().all(): expr = ( (p.loc[:, idx] * efficiency[idx]) .groupby(grouping, axis=1) .sum() .sum(dims="snapshot") ) lhs.append(expr) lhs = sum(lhs) # dimension: (country) lhs = lhs.rename({list(lhs.dims.keys())[0]: "country"}) rhs = pd.Series(co2_limit_countries) # dimension: (country) for ct in lhs.indexes["country"]: n.model.add_constraints( lhs.loc[ct] <= rhs[ct], name=f"GlobalConstraint-co2_limit_per_country{ct}", ) n.add( "GlobalConstraint", f"co2_limit_per_country{ct}", constant=rhs[ct], sense="<=", type="", ) def extra_functionality(n, snapshots): """ Collects supplementary constraints which will be passed to ``pypsa.optimization.optimize``. If you want to enforce additional custom constraints, this is a good location to add them. The arguments ``opts`` and ``snakemake.config`` are expected to be attached to the network. """ opts = n.opts config = n.config if "BAU" in opts and n.generators.p_nom_extendable.any(): add_BAU_constraints(n, config) if "SAFE" in opts and n.generators.p_nom_extendable.any(): add_SAFE_constraints(n, config) if "CCL" in opts and n.generators.p_nom_extendable.any(): add_CCL_constraints(n, config) reserve = config["electricity"].get("operational_reserve", {}) if reserve.get("activate"): add_operational_reserve_margin(n, snapshots, config) for o in opts: if "EQ" in o: add_EQ_constraints(n, o) add_battery_constraints(n) add_pipe_retrofit_constraint(n) if n._multi_invest: add_carbon_constraint(n, snapshots) add_carbon_budget_constraint(n, snapshots) add_retrofit_gas_boiler_constraint(n, snapshots) if n.config["sector"]["co2_budget_national"]: # prepare co2 constraint nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 investment_year = int(snakemake.wildcards.planning_horizons[-4:]) limit_countries = snakemake.config["co2_budget_national"][investment_year] # add co2 constraint for each country logger.info(f"Add CO2 limit for each country") add_co2limit_country(n, limit_countries, nyears) def solve_network(n, config, solving, opts="", **kwargs): set_of_options = solving["solver"]["options"] cf_solving = solving["options"] kwargs["multi_investment_periods"] = config["foresight"] == "perfect" kwargs["solver_options"] = ( solving["solver_options"][set_of_options] if set_of_options else {} ) kwargs["solver_name"] = solving["solver"]["name"] kwargs["extra_functionality"] = extra_functionality kwargs["transmission_losses"] = cf_solving.get("transmission_losses", False) kwargs["linearized_unit_commitment"] = cf_solving.get( "linearized_unit_commitment", False ) kwargs["assign_all_duals"] = cf_solving.get("assign_all_duals", False) rolling_horizon = cf_solving.pop("rolling_horizon", False) skip_iterations = cf_solving.pop("skip_iterations", False) if not n.lines.s_nom_extendable.any(): skip_iterations = True logger.info("No expandable lines found. Skipping iterative solving.") # add to network for extra_functionality n.config = config n.opts = opts if rolling_horizon: kwargs["horizon"] = cf_solving.get("horizon", 365) kwargs["overlap"] = cf_solving.get("overlap", 0) n.optimize.optimize_with_rolling_horizon(**kwargs) status, condition = "", "" elif skip_iterations: status, condition = n.optimize(**kwargs) else: kwargs["track_iterations"] = (cf_solving.get("track_iterations", False),) kwargs["min_iterations"] = (cf_solving.get("min_iterations", 4),) kwargs["max_iterations"] = (cf_solving.get("max_iterations", 6),) status, condition = n.optimize.optimize_transmission_expansion_iteratively( **kwargs ) if status != "ok" and not rolling_horizon: logger.warning( f"Solving status '{status}' with termination condition '{condition}'" ) if "infeasible" in condition: raise RuntimeError("Solving status 'infeasible'") return n if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "solve_sector_network_perfect", configfiles="../config/test/config.perfect.yaml", simpl="", opts="", clusters="5", ll="v1.5", sector_opts="8760H-T-H-B-I-A-solar+p3-dist1", planning_horizons="2030", ) configure_logging(snakemake) if "sector_opts" in snakemake.wildcards.keys(): update_config_with_sector_opts( snakemake.config, snakemake.wildcards.sector_opts ) opts = snakemake.wildcards.opts if "sector_opts" in snakemake.wildcards.keys(): opts += "-" + snakemake.wildcards.sector_opts opts = [o for o in opts.split("-") if o != ""] solve_opts = snakemake.params.solving["options"] np.random.seed(solve_opts.get("seed", 123)) n = pypsa.Network(snakemake.input.network) n = prepare_network( n, solve_opts, config=snakemake.config, foresight=snakemake.params.foresight, planning_horizons=snakemake.params.planning_horizons, co2_sequestration_potential=snakemake.params["co2_sequestration_potential"], ) with memory_logger( filename=getattr(snakemake.log, "memory", None), interval=30.0 ) as mem: n = solve_network( n, config=snakemake.config, solving=snakemake.params.solving, opts=opts, log_fn=snakemake.log.solver, ) logger.info(f"Maximum memory usage: {mem.mem_usage}") n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) n.export_to_netcdf(snakemake.output[0])