#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 16 10:37:35 2023 This script extracts monthly fuel prices of oil, gas, coal and lignite, as well as CO2 prices Inputs ------ - ``data/energy-price-trends-xlsx-5619002.xlsx``: energy price index of fossil fuels - ``emission-spot-primary-market-auction-report-2019-data.xls``: CO2 Prices spot primary auction Outputs ------- - ``data/validation/monthly_fuel_price.csv`` - ``data/validation/CO2_price_2019.csv`` Description ----------- The rule :mod:`build_monthly_prices` collects monthly fuel prices and CO2 prices and translates them from different input sources to pypsa syntax Data sources: [1] Fuel price index. Destatis https://www.destatis.de/EN/Home/_node.html [2] average annual import price (coal, gas, oil) Agora, slide 22 https://static.agora-energiewende.de/fileadmin/Projekte/2022/2022-10_DE_JAW2022/2023-02-20_Praesentation_Agora_Jahresauswertung.pdf [3] average annual fuel price lignite, ENTSO-E https://2020.entsos-tyndp-scenarios.eu/fuel-commodities-and-carbon-prices/ [4] CO2 Prices, Emission spot primary auction, EEX https://www.eex.com/en/market-data/environmental-markets/eua-primary-auction-spot-download Data was accessed at 16.5.2023 """ import pandas as pd import logging from _helpers import configure_logging logger = logging.getLogger(__name__) validation_year = 2019 # sheet names to pypsa syntax sheet_name_map = {"5.1 Hard coal and lignite": "coal", "5.2 Mineral oil" : "oil", "5.3.1 Natural gas - indices":"gas"} # keywords in datasheet keywords = {"coal": " GP09-051 Hard coal", "lignite": " GP09-052 Lignite and lignite briquettes", "oil": " GP09-0610 10 Mineral oil, crude", "gas": "GP09-062 Natural gas" } # import fuel price 2015 in Eur/MWh # source for coal, oil, gas, Agora, slide 22 [2] # source lignite, price for 2020, scaled by price index, ENTSO-E [3] price_2015 = {"coal": 8, "oil": 31, "gas": 21, "lignite": 3.8} # 2020 3.96/1.04 def get_fuel_price(): fuel_price = pd.read_excel(snakemake.input.fuel_price_raw, sheet_name=list(sheet_name_map.keys())) fuel_price = {sheet_name_map[key]: value for key, value in fuel_price.items() if key in sheet_name_map} # lignite and hard coal are on the same sheet fuel_price["lignite"] = fuel_price["coal"] def extract_df(sheet, keyword): # Create a DatetimeIndex for the first day of each month of a given year dti = pd.date_range(start=f'{validation_year}-01-01', end=f'{validation_year}-12-01', freq='MS') # Extract month names month_list = dti.month start = fuel_price[sheet].index[(fuel_price[sheet] == keyword).any(axis=1)] df = fuel_price[sheet].loc[start[0]:start[0]+18,:] df.dropna(axis=0, inplace=True) df.iloc[:,0] = df.iloc[:,0].apply(lambda x: int(x.replace(" ...", ""))) df.set_index(df.columns[0], inplace=True) df = df.iloc[:, :12] df.columns = month_list return df m_price = {} for carrier, keyword in keywords.items(): df = extract_df(carrier, keyword).loc[validation_year] m_price[carrier] = df.mul(price_2015[carrier]/100) pd.concat(m_price, axis=1).to_csv(snakemake.output.fuel_price) def get_co2_price(): # emission price CO2_price = pd.read_excel(snakemake.input.co2_price_raw, index_col=1, header=5) CO2_price["Auction Price €/tCO2"].to_csv(snakemake.output.co2_price) if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("build_monthly_prices") configure_logging(snakemake) get_fuel_price() get_co2_price()