# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Creates networks clustered to ``{cluster}`` number of zones with aggregated buses, generators and transmission corridors. Relevant Settings ----------------- .. code:: yaml clustering: cluster_network: aggregation_strategies: focus_weights: solving: solver: name: lines: length_factor: .. seealso:: Documentation of the configuration file ``config/config.yaml`` at :ref:`toplevel_cf`, :ref:`renewable_cf`, :ref:`solving_cf`, :ref:`lines_cf` Inputs ------ - ``resources/regions_onshore_elec_s{simpl}.geojson``: confer :ref:`simplify` - ``resources/regions_offshore_elec_s{simpl}.geojson``: confer :ref:`simplify` - ``resources/busmap_elec_s{simpl}.csv``: confer :ref:`simplify` - ``networks/elec_s{simpl}.nc``: confer :ref:`simplify` - ``data/custom_busmap_elec_s{simpl}_{clusters}.csv``: optional input Outputs ------- - ``resources/regions_onshore_elec_s{simpl}_{clusters}.geojson``: .. image:: img/regions_onshore_elec_s_X.png :scale: 33 % - ``resources/regions_offshore_elec_s{simpl}_{clusters}.geojson``: .. image:: img/regions_offshore_elec_s_X.png :scale: 33 % - ``resources/busmap_elec_s{simpl}_{clusters}.csv``: Mapping of buses from ``networks/elec_s{simpl}.nc`` to ``networks/elec_s{simpl}_{clusters}.nc``; - ``resources/linemap_elec_s{simpl}_{clusters}.csv``: Mapping of lines from ``networks/elec_s{simpl}.nc`` to ``networks/elec_s{simpl}_{clusters}.nc``; - ``networks/elec_s{simpl}_{clusters}.nc``: .. image:: img/elec_s_X.png :scale: 40 % Description ----------- .. note:: **Why is clustering used both in** ``simplify_network`` **and** ``cluster_network`` **?** Consider for example a network ``networks/elec_s100_50.nc`` in which ``simplify_network`` clusters the network to 100 buses and in a second step ``cluster_network``` reduces it down to 50 buses. In preliminary tests, it turns out, that the principal effect of changing spatial resolution is actually only partially due to the transmission network. It is more important to differentiate between wind generators with higher capacity factors from those with lower capacity factors, i.e. to have a higher spatial resolution in the renewable generation than in the number of buses. The two-step clustering allows to study this effect by looking at networks like ``networks/elec_s100_50m.nc``. Note the additional ``m`` in the ``{cluster}`` wildcard. So in the example network there are still up to 100 different wind generators. In combination these two features allow you to study the spatial resolution of the transmission network separately from the spatial resolution of renewable generators. **Is it possible to run the model without the** ``simplify_network`` **rule?** No, the network clustering methods in the PyPSA module `pypsa.clustering.spatial `_ do not work reliably with multiple voltage levels and transformers. .. tip:: The rule :mod:`cluster_networks` runs for all ``scenario`` s in the configuration file the rule :mod:`cluster_network`. Exemplary unsolved network clustered to 512 nodes: .. image:: img/elec_s_512.png :scale: 40 % :align: center Exemplary unsolved network clustered to 256 nodes: .. image:: img/elec_s_256.png :scale: 40 % :align: center Exemplary unsolved network clustered to 128 nodes: .. image:: img/elec_s_128.png :scale: 40 % :align: center Exemplary unsolved network clustered to 37 nodes: .. image:: img/elec_s_37.png :scale: 40 % :align: center """ import logging import warnings from functools import reduce import geopandas as gpd import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyomo.environ as po import pypsa import seaborn as sns from _helpers import configure_logging, get_aggregation_strategies, update_p_nom_max from pypsa.clustering.spatial import ( busmap_by_greedy_modularity, busmap_by_hac, busmap_by_kmeans, get_clustering_from_busmap, ) warnings.filterwarnings(action="ignore", category=UserWarning) from add_electricity import load_costs idx = pd.IndexSlice logger = logging.getLogger(__name__) def normed(x): return (x / x.sum()).fillna(0.0) def weighting_for_country(n, x): conv_carriers = {"OCGT", "CCGT", "PHS", "hydro"} gen = n.generators.loc[n.generators.carrier.isin(conv_carriers)].groupby( "bus" ).p_nom.sum().reindex(n.buses.index, fill_value=0.0) + n.storage_units.loc[ n.storage_units.carrier.isin(conv_carriers) ].groupby( "bus" ).p_nom.sum().reindex( n.buses.index, fill_value=0.0 ) load = n.loads_t.p_set.mean().groupby(n.loads.bus).sum() b_i = x.index g = normed(gen.reindex(b_i, fill_value=0)) l = normed(load.reindex(b_i, fill_value=0)) w = g + l return (w * (100.0 / w.max())).clip(lower=1.0).astype(int) def get_feature_for_hac(n, buses_i=None, feature=None): if buses_i is None: buses_i = n.buses.index if feature is None: feature = "solar+onwind-time" carriers = feature.split("-")[0].split("+") if "offwind" in carriers: carriers.remove("offwind") carriers = np.append( carriers, n.generators.carrier.filter(like="offwind").unique() ) if feature.split("-")[1] == "cap": feature_data = pd.DataFrame(index=buses_i, columns=carriers) for carrier in carriers: gen_i = n.generators.query("carrier == @carrier").index attach = ( n.generators_t.p_max_pu[gen_i] .mean() .rename(index=n.generators.loc[gen_i].bus) ) feature_data[carrier] = attach if feature.split("-")[1] == "time": feature_data = pd.DataFrame(columns=buses_i) for carrier in carriers: gen_i = n.generators.query("carrier == @carrier").index attach = n.generators_t.p_max_pu[gen_i].rename( columns=n.generators.loc[gen_i].bus ) feature_data = pd.concat([feature_data, attach], axis=0)[buses_i] feature_data = feature_data.T # timestamp raises error in sklearn >= v1.2: feature_data.columns = feature_data.columns.astype(str) feature_data = feature_data.fillna(0) return feature_data def distribute_clusters(n, n_clusters, focus_weights=None, solver_name="cbc"): """ Determine the number of clusters per country. """ L = ( n.loads_t.p_set.mean() .groupby(n.loads.bus) .sum() .groupby([n.buses.country, n.buses.sub_network]) .sum() .pipe(normed) ) N = n.buses.groupby(["country", "sub_network"]).size() assert ( n_clusters >= len(N) and n_clusters <= N.sum() ), f"Number of clusters must be {len(N)} <= n_clusters <= {N.sum()} for this selection of countries." if focus_weights is not None: total_focus = sum(list(focus_weights.values())) assert ( total_focus <= 1.0 ), "The sum of focus weights must be less than or equal to 1." for country, weight in focus_weights.items(): L[country] = weight / len(L[country]) remainder = [ c not in focus_weights.keys() for c in L.index.get_level_values("country") ] L[remainder] = L.loc[remainder].pipe(normed) * (1 - total_focus) logger.warning("Using custom focus weights for determining number of clusters.") assert np.isclose( L.sum(), 1.0, rtol=1e-3 ), f"Country weights L must sum up to 1.0 when distributing clusters. Is {L.sum()}." m = po.ConcreteModel() def n_bounds(model, *n_id): return (1, N[n_id]) m.n = po.Var(list(L.index), bounds=n_bounds, domain=po.Integers) m.tot = po.Constraint(expr=(po.summation(m.n) == n_clusters)) m.objective = po.Objective( expr=sum((m.n[i] - L.loc[i] * n_clusters) ** 2 for i in L.index), sense=po.minimize, ) opt = po.SolverFactory(solver_name) if not opt.has_capability("quadratic_objective"): logger.warning( f"The configured solver `{solver_name}` does not support quadratic objectives. Falling back to `ipopt`." ) opt = po.SolverFactory("ipopt") results = opt.solve(m) assert ( results["Solver"][0]["Status"] == "ok" ), f"Solver returned non-optimally: {results}" return pd.Series(m.n.get_values(), index=L.index).round().astype(int) def busmap_for_n_clusters( n, n_clusters, solver_name, focus_weights=None, algorithm="kmeans", feature=None, **algorithm_kwds, ): if algorithm == "kmeans": algorithm_kwds.setdefault("n_init", 1000) algorithm_kwds.setdefault("max_iter", 30000) algorithm_kwds.setdefault("tol", 1e-6) algorithm_kwds.setdefault("random_state", 0) def fix_country_assignment_for_hac(n): from scipy.sparse import csgraph # overwrite country of nodes that are disconnected from their country-topology for country in n.buses.country.unique(): m = n[n.buses.country == country].copy() _, labels = csgraph.connected_components( m.adjacency_matrix(), directed=False ) component = pd.Series(labels, index=m.buses.index) component_sizes = component.value_counts() if len(component_sizes) > 1: disconnected_bus = component[ component == component_sizes.index[-1] ].index[0] neighbor_bus = n.lines.query( "bus0 == @disconnected_bus or bus1 == @disconnected_bus" ).iloc[0][["bus0", "bus1"]] new_country = list( set(n.buses.loc[neighbor_bus].country) - set([country]) )[0] logger.info( f"overwriting country `{country}` of bus `{disconnected_bus}` " f"to new country `{new_country}`, because it is disconnected " "from its initial inter-country transmission grid." ) n.buses.at[disconnected_bus, "country"] = new_country return n if algorithm == "hac": feature = get_feature_for_hac(n, buses_i=n.buses.index, feature=feature) n = fix_country_assignment_for_hac(n) if (algorithm != "hac") and (feature is not None): logger.warning( f"Keyword argument feature is only valid for algorithm `hac`. " f"Given feature `{feature}` will be ignored." ) n.determine_network_topology() n_clusters = distribute_clusters( n, n_clusters, focus_weights=focus_weights, solver_name=solver_name ) def busmap_for_country(x): prefix = x.name[0] + x.name[1] + " " logger.debug(f"Determining busmap for country {prefix[:-1]}") if len(x) == 1: return pd.Series(prefix + "0", index=x.index) weight = weighting_for_country(n, x) if algorithm == "kmeans": return prefix + busmap_by_kmeans( n, weight, n_clusters[x.name], buses_i=x.index, **algorithm_kwds ) elif algorithm == "hac": return prefix + busmap_by_hac( n, n_clusters[x.name], buses_i=x.index, feature=feature.loc[x.index] ) elif algorithm == "modularity": return prefix + busmap_by_greedy_modularity( n, n_clusters[x.name], buses_i=x.index ) else: raise ValueError( f"`algorithm` must be one of 'kmeans' or 'hac'. Is {algorithm}." ) return ( n.buses.groupby(["country", "sub_network"], group_keys=False) .apply(busmap_for_country) .squeeze() .rename("busmap") ) def clustering_for_n_clusters( n, n_clusters, custom_busmap=False, aggregate_carriers=None, line_length_factor=1.25, aggregation_strategies=dict(), solver_name="cbc", algorithm="hac", feature=None, extended_link_costs=0, focus_weights=None, ): bus_strategies, generator_strategies = get_aggregation_strategies( aggregation_strategies ) if not isinstance(custom_busmap, pd.Series): busmap = busmap_for_n_clusters( n, n_clusters, solver_name, focus_weights, algorithm, feature ) else: busmap = custom_busmap clustering = get_clustering_from_busmap( n, busmap, bus_strategies=bus_strategies, aggregate_generators_weighted=True, aggregate_generators_carriers=aggregate_carriers, aggregate_one_ports=["Load", "StorageUnit"], line_length_factor=line_length_factor, generator_strategies=generator_strategies, scale_link_capital_costs=False, ) if not n.links.empty: nc = clustering.network nc.links["underwater_fraction"] = ( n.links.eval("underwater_fraction * length").div(nc.links.length).dropna() ) nc.links["capital_cost"] = nc.links["capital_cost"].add( (nc.links.length - n.links.length) .clip(lower=0) .mul(extended_link_costs) .dropna(), fill_value=0, ) return clustering def cluster_regions(busmaps, input=None, output=None): busmap = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0]) for which in ("regions_onshore", "regions_offshore"): regions = gpd.read_file(getattr(input, which)) regions = regions.reindex(columns=["name", "geometry"]).set_index("name") regions_c = regions.dissolve(busmap) regions_c.index.name = "name" regions_c = regions_c.reset_index() regions_c.to_file(getattr(output, which)) def plot_busmap_for_n_clusters(n, n_clusters, fn=None): busmap = busmap_for_n_clusters(n, n_clusters) cs = busmap.unique() cr = sns.color_palette("hls", len(cs)) n.plot(bus_colors=busmap.map(dict(zip(cs, cr)))) if fn is not None: plt.savefig(fn, bbox_inches="tight") del cs, cr if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake("cluster_network", simpl="", clusters="5") configure_logging(snakemake) params = snakemake.params solver_name = snakemake.config["solving"]["solver"]["name"] n = pypsa.Network(snakemake.input.network) exclude_carriers = params.cluster_network["exclude_carriers"] aggregate_carriers = set(n.generators.carrier) - set(exclude_carriers) if snakemake.wildcards.clusters.endswith("m"): n_clusters = int(snakemake.wildcards.clusters[:-1]) aggregate_carriers = set(params.conventional_carriers).intersection( aggregate_carriers ) elif snakemake.wildcards.clusters == "all": n_clusters = len(n.buses) else: n_clusters = int(snakemake.wildcards.clusters) if n_clusters == len(n.buses): # Fast-path if no clustering is necessary busmap = n.buses.index.to_series() linemap = n.lines.index.to_series() clustering = pypsa.clustering.spatial.Clustering( n, busmap, linemap, linemap, pd.Series(dtype="O") ) else: Nyears = n.snapshot_weightings.objective.sum() / 8760 hvac_overhead_cost = load_costs( snakemake.input.tech_costs, params.costs, params.max_hours, Nyears, ).at["HVAC overhead", "capital_cost"] def consense(x): v = x.iat[0] assert ( x == v ).all() or x.isnull().all(), "The `potential` configuration option must agree for all renewable carriers, for now!" return v # translate str entries of aggregation_strategies to pd.Series functions: aggregation_strategies = { p: { k: getattr(pd.Series, v) for k, v in params.aggregation_strategies[p].items() } for p in params.aggregation_strategies.keys() } custom_busmap = params.custom_busmap if custom_busmap: custom_busmap = pd.read_csv( snakemake.input.custom_busmap, index_col=0, squeeze=True ) custom_busmap.index = custom_busmap.index.astype(str) logger.info(f"Imported custom busmap from {snakemake.input.custom_busmap}") clustering = clustering_for_n_clusters( n, n_clusters, custom_busmap, aggregate_carriers, params.length_factor, params.aggregation_strategies, solver_name, params.cluster_network["algorithm"], params.cluster_network["feature"], hvac_overhead_cost, params.focus_weights, ) update_p_nom_max(clustering.network) clustering.network.meta = dict( snakemake.config, **dict(wildcards=dict(snakemake.wildcards)) ) clustering.network.export_to_netcdf(snakemake.output.network) for attr in ( "busmap", "linemap", ): # also available: linemap_positive, linemap_negative getattr(clustering, attr).to_csv(snakemake.output[attr]) cluster_regions((clustering.busmap,), snakemake.input, snakemake.output)