{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pypsa\n", "import numpy as np\n", "import pandas as pd\n", "import os\n", "from pathlib import Path\n", "import matplotlib.pyplot as plt\n", "\n", "plt.style.use(\"ggplot\")\n", "import pycountry\n", "import json\n", "import warnings\n", "\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "available_models = {\n", " \"model_1\": \"elec_s_37_ec_lv1.0_.nc\",\n", " \"model_2\": \"elec_s_37_ec_lv1.0_3H_withUC.nc\",\n", " \"model_3\": \"elec_s_37_ec_lv1.0_Co2L-noUC-noCo2price.nc\",\n", " \"model_4\": \"elec_s_37_ec_lv1.0_Ep.nc\",\n", " \"model_5\": \"elec_s_37_ec_lv1.0_Ep_new.nc\",\n", "}\n", "\n", "model_choice = \"model_5\"\n", "\n", "data_path = Path.cwd() / \"..\" / \"..\"\n", "model_path = data_path / available_models[model_choice]\n", "\n", "with open(data_path / \"generation_data\" / \"generation_mapper_pypsa.json\", \"r\") as f:\n", " pypsa_generation_mapper = json.load(f)\n", "\n", "plot_path = data_path / \"plots\" / available_models[model_choice][:-3]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "os.mkdir(data_path / \"plots\" / available_models[model_choice][:-3])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n = pypsa.Network(str(model_path))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def intersection(alist, blist):\n", " total_list = list()\n", " for val in alist:\n", " if val in blist:\n", " total_list.append(val)\n", " return total_list" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pypsa_generation_mapper" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "color_mapper = pd.read_csv(\"color_mapper.csv\", index_col=0).iloc[:, 0]\n", "color_mapper.loc[\"Others\"] = \"#D3D3D3\"\n", "color_mapper.loc[\"Storage Charge\"] = \"#51dbcc\"\n", "color_mapper.loc[\"Storage Discharge\"] = \"#51dbcc\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "color_mapper" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "countries = set([col[:2] for col in n.generators_t.p.columns])\n", "gen = set([col[6:] for col in n.generators_t.p.columns])\n", "\n", "for i, country in enumerate(countries):\n", " df = pd.DataFrame(index=n.generators_t.p.index)\n", " # country_generation = [col for col in n.generators_t.p.columns if col.startswith(country)]\n", " country_generation = n.generators.loc[n.generators.bus.str.contains(country)]\n", "\n", " for key, gens in pypsa_generation_mapper.items():\n", " # curr_gen = country_generation.loc[\n", " # (country_generation.carrier.str.contains(tech) for tech in gens).astype(bool)].index\n", " curr_gen = country_generation.loc[\n", " country_generation.carrier.apply(lambda carr: carr in gens)\n", " ].index\n", "\n", " if len(curr_gen):\n", " df[key] = n.generators_t.p[curr_gen].mean(axis=1)\n", " else:\n", " df[key] = np.zeros(len(df))\n", "\n", " df.to_csv(data_path / \"pypsa_data\" / (country + \".csv\"))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_inflow_cols = [\n", " \"Solar\",\n", " \"Wind Onshore\",\n", " \"Nuclear\",\n", " \"Lignite\",\n", " \"Inflow Lines\",\n", " \"Inflow Links\",\n", " \"Wind Offshore\",\n", " \"Biomass\",\n", " \"Run of River\",\n", " \"Hydro\",\n", " \"Hard Coal\",\n", " \"Gas\",\n", " \"Oil\",\n", "]\n", "total_outflow_cols = [\"Outflow Links\", \"Outflow Lines\", \"Storage Charge\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "total_inflow_set = set()\n", "total_outflow_set = set()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", "from sklearn.metrics import mean_absolute_error\n", "\n", "index = n.generators_t.p.index\n", "\n", "pypsa_total_inflow = pd.DataFrame(\n", " np.zeros((len(index), len(total_inflow_cols))),\n", " index=index,\n", " columns=total_inflow_cols,\n", ")\n", "entsoe_df = pd.read_csv(\n", " data_path / \"harmonised_generation_data\" / (\"prepared_DE.csv\"),\n", " parse_dates=True,\n", " index_col=0,\n", ")\n", "entsoe_total_inflow = pd.DataFrame(\n", " np.zeros((len(entsoe_df), len(total_inflow_cols))),\n", " index=entsoe_df.index,\n", " columns=total_inflow_cols,\n", ")\n", "pypsa_total_outflow = pd.DataFrame(\n", " np.zeros((len(index), len(total_outflow_cols))),\n", " index=index,\n", " columns=total_outflow_cols,\n", ")\n", "total_load = pd.Series(index=index)\n", "\n", "for num, country in enumerate(os.listdir(data_path / \"pypsa_data\")):\n", " # country = \"DE.csv\"\n", " cc = country[:2]\n", "\n", " country_buses = np.unique(\n", " n.generators.loc[n.generators.bus.str.contains(cc)].bus.values\n", " )\n", " print(f\"Buses for country {country[:-4]}: \", country_buses)\n", "\n", " if not len(country_buses) == 1:\n", " print(\"Current implementation is for one bus per country\")\n", " print(f\"Skipping!\")\n", " continue\n", "\n", " bus = country_buses[0]\n", "\n", " \"\"\" \n", " pypsa_df = pd.read_csv(data_path / \"pypsa_data\" / country, parse_dates=True, index_col=0)\n", " \"\"\"\n", " try:\n", " entsoe_df = pd.read_csv(\n", " data_path / \"harmonised_generation_data\" / (\"prepared_\" + country),\n", " parse_dates=True,\n", " index_col=0,\n", " )\n", "\n", " entsoe_df.columns = [col[:-6] for col in entsoe_df.columns]\n", " entsoe_df = entsoe_df.iloc[1:]\n", " entsoe_df = entsoe_df.multiply(1e-3)\n", " except FileNotFoundError:\n", " continue\n", "\n", " fig, axs = plt.subplots(4, 3, figsize=(20, 20))\n", "\n", " axs[0, 0].set_title(pycountry.countries.get(alpha_2=country[:2]).name)\n", "\n", " start = pd.Timestamp(\"2019-01-01\") # for small time frame\n", " end = pd.Timestamp(\"2019-01-14\")\n", " coarse_freq = \"3d\"\n", "\n", " num_techs_shown = 6\n", "\n", " energy_inflow = pd.DataFrame(index=n.loads_t.p_set.index)\n", " energy_outflow = pd.DataFrame(index=n.loads_t.p_set.index)\n", "\n", " # add generation\n", " country_gen = n.generators.loc[n.generators.bus == bus]\n", "\n", " for tech, pypsa_carrier in pypsa_generation_mapper.items():\n", " gens = country_gen.loc[\n", " country_gen.carrier.apply(lambda c: c in pypsa_carrier)\n", " ].index\n", " energy_inflow[tech] = n.generators_t.p[gens].sum(axis=1)\n", "\n", " # add inflows from lines\n", " lines0 = n.lines.loc[n.lines.bus0 == bus].index\n", " lines1 = n.lines.loc[n.lines.bus1 == bus].index\n", "\n", " lines_flow = np.zeros(energy_inflow.shape[0])\n", " if not lines0.empty:\n", " lines_flow = -n.lines_t.p0[lines0].sum(axis=1)\n", "\n", " if not lines1.empty:\n", " lines_flow -= n.lines_t.p1[lines1].sum(axis=1)\n", "\n", " energy_inflow[\"Inflow Lines\"] = np.maximum(np.zeros_like(lines_flow), lines_flow)\n", " energy_outflow[\"Outflow Lines\"] = np.minimum(np.zeros_like(lines_flow), lines_flow)\n", "\n", " # add inflows from links\n", " links0 = n.links.loc[n.links.bus0 == bus].index\n", " links1 = n.links.loc[n.links.bus1 == bus].index\n", "\n", " links_flow = np.zeros(energy_inflow.shape[0])\n", " if not links0.empty:\n", " links_flow = (\n", " -n.links_t.p0[links0]\n", " .multiply(n.links.loc[links0, \"efficiency\"])\n", " .sum(axis=1)\n", " )\n", "\n", " if not links1.empty:\n", " links_flow -= (\n", " n.links_t.p1[links1].multiply(n.links.loc[links1, \"efficiency\"]).sum(axis=1)\n", " )\n", "\n", " energy_inflow[\"Inflow Links\"] = np.maximum(np.zeros_like(links_flow), links_flow)\n", " energy_outflow[\"Outflow Links\"] = np.minimum(np.zeros_like(links_flow), links_flow)\n", "\n", " storage = n.storage_units.loc[n.storage_units.bus == bus].index\n", " if not storage.empty:\n", " storage_p = n.storage_units_t.p[storage].sum(axis=1).values\n", " # energy_inflow[\"Storage Discharge\"] = np.maximum(np.zeros_like(links_flow), storage_p)\n", " energy_inflow[\"Hydro\"] = energy_inflow[\"Hydro\"].values + np.maximum(\n", " np.zeros_like(links_flow), storage_p\n", " )\n", " energy_outflow[\"Storage Charge\"] = np.minimum(\n", " np.zeros_like(links_flow), storage_p\n", " )\n", "\n", " energy_inflow = energy_inflow.iloc[:-1].multiply(1e-3)\n", " energy_outflow = energy_outflow.iloc[:-1].multiply(1e-3)\n", " load = n.loads_t.p_set[bus].iloc[:-1].multiply(1e-3)\n", "\n", " total_load = total_load.loc[load.index]\n", " total_load = total_load + load\n", "\n", " pypsa_total_inflow = pypsa_total_inflow.loc[energy_inflow.index]\n", " pypsa_total_inflow[energy_inflow.columns] = (\n", " pypsa_total_inflow[energy_inflow.columns] + energy_inflow\n", " )\n", "\n", " pypsa_total_outflow = pypsa_total_outflow.loc[energy_outflow.index]\n", " pypsa_total_outflow[energy_outflow.columns] = (\n", " pypsa_total_outflow[energy_outflow.columns] + energy_outflow\n", " )\n", "\n", " entsoe_total_inflow = entsoe_total_inflow.loc[entsoe_df.index]\n", " entsoe_total_inflow[entsoe_df.columns] = entsoe_total_inflow[\n", " entsoe_df.columns\n", " ] + entsoe_df.fillna(0.0)\n", "\n", " show_techs = (\n", " energy_inflow.sum()\n", " .sort_values(ascending=False)\n", " .iloc[:num_techs_shown]\n", " .index.tolist()\n", " )\n", " others = (\n", " energy_inflow.sum()\n", " .sort_values(ascending=False)\n", " .iloc[num_techs_shown:]\n", " .index.tolist()\n", " )\n", " # show_techs = entsoe_df.sum().sort_values(ascending=False).iloc[:num_techs_shown].index.tolist()\n", "\n", " show_techs = intersection(show_techs, entsoe_df.columns.tolist())\n", " entsoe_df[\"Others\"] = entsoe_df.drop(columns=show_techs).sum(axis=1)\n", "\n", " # entsoe_df[show_techs + [\"Others\"]].loc[start:end].plot.area(ax=axs[0,0])\n", " index = load.loc[start:end].index\n", "\n", " entsoe_df.index = load.index\n", "\n", " energy_inflow[\"Others\"] = energy_inflow.drop(columns=show_techs).sum(axis=1)\n", "\n", " # plot timeframe\n", " axs[0, 0].plot(\n", " index,\n", " load.loc[index].values,\n", " linestyle=\"--\",\n", " color=\"k\",\n", " linewidth=2,\n", " label=\"PyPSA Load\",\n", " )\n", " axs[0, 1].plot(\n", " index, load.loc[index].values, linestyle=\"--\", color=\"k\", linewidth=2\n", " )\n", "\n", " axs[0, 1].stackplot(\n", " index,\n", " *[energy_inflow[col].loc[index].values for col in show_techs + [\"Others\"]],\n", " colors=color_mapper.loc[show_techs + [\"Others\"]].tolist(),\n", " )\n", " axs[0, 1].stackplot(\n", " index,\n", " *[energy_outflow[col].loc[index].values for col in energy_outflow.columns],\n", " colors=color_mapper.loc[energy_outflow.columns].tolist(),\n", " labels=energy_outflow.columns,\n", " )\n", "\n", " axs[0, 0].stackplot(\n", " index,\n", " *[entsoe_df[col].loc[index].values for col in show_techs + [\"Others\"]],\n", " labels=show_techs + [\"Others\"],\n", " colors=color_mapper.loc[show_techs + [\"Others\"]].tolist(),\n", " )\n", " axs[0, 1].plot(\n", " index,\n", " energy_inflow.loc[index][show_techs + [\"Others\"]].sum(axis=1).values\n", " + energy_outflow.loc[index].sum(axis=1).values,\n", " color=\"brown\",\n", " linestyle=\":\",\n", " linewidth=2,\n", " label=\"Accum Gen\",\n", " )\n", "\n", " axs[0, 0].legend()\n", " axs[0, 1].legend()\n", "\n", " # plot whole year\n", "\n", " index = load.resample(coarse_freq).mean().index\n", "\n", " axs[1, 0].plot(\n", " index,\n", " load.resample(coarse_freq).mean().values,\n", " linestyle=\"--\",\n", " color=\"k\",\n", " linewidth=2,\n", " label=\"PyPSA Load\",\n", " )\n", " axs[1, 1].plot(\n", " index,\n", " load.resample(coarse_freq).mean().values,\n", " linestyle=\"--\",\n", " color=\"k\",\n", " linewidth=2,\n", " )\n", "\n", " axs[1, 1].stackplot(\n", " index,\n", " *[\n", " energy_inflow[col].resample(coarse_freq).mean().values\n", " for col in show_techs + [\"Others\"]\n", " ],\n", " colors=color_mapper.loc[show_techs + [\"Others\"]].tolist(),\n", " )\n", " axs[1, 1].stackplot(\n", " index,\n", " *[\n", " energy_outflow[col].resample(coarse_freq).mean().values\n", " for col in energy_outflow.columns\n", " ],\n", " colors=color_mapper.loc[energy_outflow.columns].tolist(),\n", " labels=energy_outflow.columns,\n", " )\n", "\n", " axs[1, 0].stackplot(\n", " index,\n", " *[\n", " entsoe_df[col].resample(coarse_freq).mean().values\n", " for col in show_techs + [\"Others\"]\n", " ],\n", " colors=color_mapper.loc[show_techs + [\"Others\"]].tolist(),\n", " labels=show_techs + [\"Others\"],\n", " )\n", "\n", " axs[1, 1].plot(\n", " index,\n", " energy_inflow.resample(coarse_freq)\n", " .mean()[show_techs + [\"Others\"]]\n", " .sum(axis=1)\n", " .values\n", " + energy_outflow.resample(coarse_freq).mean().sum(axis=1).values,\n", " color=\"brown\",\n", " linestyle=\":\",\n", " linewidth=2,\n", " label=\"Accum Gen\",\n", " )\n", "\n", " axs[1, 0].legend()\n", " axs[1, 1].legend()\n", "\n", " y_min = pd.concat([energy_outflow.sum(axis=1)]).min()\n", " y_max = pd.concat(\n", " [energy_inflow.sum(axis=1), entsoe_df.sum(axis=1)], ignore_index=True\n", " ).max()\n", "\n", " for ax in axs[:2, :2].flatten():\n", " ax.set_ylim(y_min, y_max)\n", " ax.set_ylim(y_min, y_max)\n", "\n", " axs[0, 0].set_ylabel(\"ENTSOE Gen and PyPSA Load [GW]\")\n", " axs[0, 1].set_ylabel(\"PyPSA Gen and Load [GW]\")\n", " axs[1, 0].set_ylabel(\"ENTSOE Gen and PyPSA Load [GW]\")\n", " axs[1, 1].set_ylabel(\"PyPSA Gen and Load [GW]\")\n", " axs[2, 0].set_ylabel(\"ENTSOE Gen and PyPSA Load [GW]\")\n", " axs[2, 1].set_ylabel(\"PyPSA Gen and Load [GW]\")\n", "\n", " # -------------------------- electricity prices comparison ----------------------------------\n", " prices_col = [\n", " col for col in n.buses_t.marginal_price.columns if col.startswith(country[:2])\n", " ]\n", " pypsa_prices = n.buses_t.marginal_price[prices_col].mean(axis=1)\n", "\n", " full_index = pypsa_prices.index\n", "\n", " coarse_pypsa_prices = pypsa_prices.resample(coarse_freq).mean()\n", " pypsa_prices = pypsa_prices.loc[start:end]\n", "\n", " axs[0, 2].plot(\n", " pypsa_prices.index, pypsa_prices.values, label=\"PyPSA prices\", color=\"royalblue\"\n", " )\n", " axs[1, 2].plot(\n", " coarse_pypsa_prices.index,\n", " coarse_pypsa_prices.values,\n", " label=\"PyPSA prices\",\n", " color=\"royalblue\",\n", " )\n", "\n", " try:\n", " entsoe_prices = pd.read_csv(\n", " data_path / \"price_data\" / country,\n", " index_col=0,\n", " parse_dates=True,\n", " ).iloc[:-1]\n", "\n", " def make_tz_time(time):\n", " return pd.Timestamp(time).tz_convert(\"utc\")\n", "\n", " # entsoe_prices.index = pd.Series(entsoe_prices.index).apply(lambda time: make_tz_time(time))\n", " entsoe_prices.index = full_index\n", " mean_abs_error = mean_absolute_error(\n", " entsoe_prices.values,\n", " n.buses_t.marginal_price[prices_col].mean(axis=1).values,\n", " )\n", "\n", " coarse_prices = entsoe_prices.resample(coarse_freq).mean()\n", " entsoe_prices = entsoe_prices.loc[start:end]\n", "\n", " axs[0, 2].plot(\n", " entsoe_prices.index,\n", " entsoe_prices.values,\n", " label=\"ENTSOE prices\",\n", " color=\"darkred\",\n", " )\n", " axs[1, 2].plot(\n", " coarse_prices.index,\n", " coarse_prices.values,\n", " label=\"ENTSOE prices\",\n", " color=\"darkred\",\n", " )\n", "\n", " except FileNotFoundError:\n", " mean_abs_error = None\n", " pass\n", "\n", " upper_lim = pd.concat((entsoe_prices, pypsa_prices), axis=0).max().max()\n", " for ax in axs[:2, 2]:\n", " ax.set_ylim(0, upper_lim)\n", " ax.set_ylabel(\"Electricty Prices [Euro/MWh]\")\n", " ax.legend()\n", "\n", " if not mean_abs_error is None:\n", " axs[1, -1].set_title(f\"Mean Abs Error: {np.around(mean_abs_error, decimals=2)}\")\n", "\n", " # remaining_cols = energy_inflow.drop(column s=show_techs+[\"Others\"]).columns.tolist()\n", " # axs[1,0].set_title(f\"Others: {remaining_cols}\")\n", "\n", " # ------------------------------- duration curves ------------------------------\n", "\n", " entsoe_ddf = entsoe_df[show_techs + [\"Others\"]].reset_index(drop=True)\n", "\n", " entsoe_ddf = pd.concat(\n", " [\n", " entsoe_ddf[col].sort_values(ascending=False).reset_index(drop=True)\n", " for col in entsoe_ddf.columns\n", " ],\n", " axis=1,\n", " )\n", "\n", " axs[2, 0].stackplot(\n", " range(len(entsoe_ddf)),\n", " *[entsoe_ddf[col].values for col in entsoe_ddf.columns],\n", " colors=color_mapper.loc[entsoe_ddf.columns].tolist(),\n", " labels=entsoe_ddf.columns,\n", " )\n", "\n", " pypsa_ddf = energy_inflow[show_techs + [\"Others\"]].reset_index(drop=True)\n", " pypsa_ddf = pd.concat(\n", " [\n", " pypsa_ddf[col].sort_values(ascending=False).reset_index(drop=True)\n", " for col in pypsa_ddf.columns\n", " ],\n", " axis=1,\n", " )\n", "\n", " axs[2, 1].stackplot(\n", " range(len(pypsa_ddf)),\n", " *[pypsa_ddf[col].values for col in pypsa_ddf.columns],\n", " colors=color_mapper.loc[pypsa_ddf.columns].tolist(),\n", " labels=pypsa_ddf.columns,\n", " )\n", "\n", " ylim_max = max([pypsa_ddf.max(axis=0).sum(), entsoe_ddf.max(axis=0).sum()])\n", "\n", " pypsa_ddf = energy_outflow.reset_index(drop=True)\n", " pypsa_ddf = pd.concat(\n", " [\n", " pypsa_ddf[col].sort_values(ascending=True).reset_index(drop=True)\n", " for col in pypsa_ddf.columns\n", " ],\n", " axis=1,\n", " )\n", "\n", " axs[2, 1].stackplot(\n", " range(len(pypsa_ddf)),\n", " *[pypsa_ddf[col].values for col in pypsa_ddf.columns],\n", " colors=color_mapper.loc[pypsa_ddf.columns].tolist(),\n", " labels=energy_outflow.columns,\n", " )\n", "\n", " ylim_min = energy_outflow.min(axis=0).sum()\n", "\n", " for ax in axs[2, :2]:\n", " ax.legend()\n", " ax.set_ylim(ylim_min, ylim_max)\n", "\n", " pypsa_totals = pd.concat(\n", " [energy_inflow[show_techs + [\"Others\"]], energy_outflow], axis=1\n", " ).sum()\n", "\n", " entsoe_totals = entsoe_df.sum()\n", " totals = pd.DataFrame(index=pypsa_totals.index)\n", "\n", " for tech in pypsa_totals.index:\n", " if tech not in entsoe_totals.index:\n", " entsoe_totals.loc[tech] = 0.0\n", "\n", " totals[\"Pypsa\"] = pypsa_totals\n", " totals[\"Entsoe\"] = entsoe_totals\n", " totals[\"Technology\"] = totals.index\n", "\n", " totals = pd.concat(\n", " [\n", " pd.DataFrame(\n", " {\n", " \"Source\": [\"PyPSA\" for _ in range(len(pypsa_totals))],\n", " \"Technology\": pypsa_totals.index,\n", " \"Total Generation\": pypsa_totals.values,\n", " }\n", " ),\n", " pd.DataFrame(\n", " {\n", " \"Source\": [\"ENTSO-E\" for _ in range(len(entsoe_totals))],\n", " \"Technology\": entsoe_totals.index,\n", " \"Total Generation\": entsoe_totals.values,\n", " }\n", " ),\n", " ],\n", " axis=0,\n", " )\n", "\n", " sns.barplot(\n", " data=totals,\n", " x=\"Technology\",\n", " y=\"Total Generation\",\n", " hue=\"Source\",\n", " ax=axs[2, 2],\n", " palette=\"dark\",\n", " alpha=0.6,\n", " edgecolor=\"k\",\n", " )\n", "\n", " axs[2, 0].set_xlabel(\"Hours\")\n", " axs[2, 1].set_xlabel(\"Hours\")\n", " axs[2, 2].set_ylabel(\"Total Generation [GWh]\")\n", " axs[2, 2].set_xticks(\n", " axs[2, 2].get_xticks(), axs[2, 2].get_xticklabels(), rotation=45, ha=\"right\"\n", " )\n", "\n", " corrs = (\n", " energy_inflow.corrwith(entsoe_df)\n", " .drop(index=\"Others\")\n", " .dropna()\n", " .sort_values(ascending=False)\n", " )\n", "\n", " for col, ax in zip(corrs.index[:2].tolist() + [corrs.index[-1]], axs[3]):\n", " ax.scatter(\n", " entsoe_df[col].values,\n", " energy_inflow[col].values,\n", " color=\"darkred\",\n", " alpha=0.5,\n", " s=20,\n", " edgecolor=\"k\",\n", " )\n", " ax.set_title(f\"{col}; Pearson Corr {np.around(corrs.loc[col], decimals=4)}\")\n", " ax.set_xlabel(\"ENTSO-E Generation [GW]\")\n", " ax.set_ylabel(\"PyPSA-Eur Generation [GW]\")\n", "\n", " for ax in axs[:2].flatten():\n", " ax.set_xlabel(\"Datetime\")\n", "\n", " plt.tight_layout()\n", " plt.savefig(plot_path / (cc + \".pdf\"))\n", "\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# pypsa_total_inflow.to_csv(\"total_inflow_pypsa.csv\")\n", "# pypsa_total_outflow.to_csv(\"total_outflow_pypsa.csv\")\n", "# entsoe_total_inflow.to_csv(\"total_inflow_entsoe.csv\")\n", "# total_load.to_csv(\"total_load.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import mean_absolute_error\n", "from tqdm import tqdm\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "plt.style.use(\"ggplot\")\n", "import seaborn as sns\n", "import numpy as np\n", "\n", "entsoe_total_inflow = pd.read_csv(\n", " \"total_inflow_entsoe.csv\", index_col=0, parse_dates=True\n", ")\n", "pypsa_total_inflow = pd.read_csv(\n", " \"total_inflow_pypsa.csv\", index_col=0, parse_dates=True\n", ")\n", "pypsa_total_outflow = pd.read_csv(\n", " \"total_outflow_pypsa.csv\", index_col=0, parse_dates=True\n", ")\n", "total_load = pd.read_csv(\"total_load.csv\", index_col=0, parse_dates=True)\n", "\n", "fig, ax = plt.subplots(1, 1, figsize=(10, 6))\n", "\n", "# pypsa_totals = pd.concat([pypsa_total_inflow, pypsa_total_outflow], axis=1).sum() * 1e-3\n", "pypsa_totals = (\n", " pypsa_total_inflow.drop(columns=[\"Inflow Lines\", \"Inflow Links\"]).sum() * 1e-3\n", ")\n", "\n", "entsoe_totals = (\n", " entsoe_total_inflow.drop(columns=[\"Inflow Lines\", \"Inflow Links\"]).sum() * 1e-3\n", ")\n", "totals = pd.DataFrame(index=pypsa_totals.index)\n", "\n", "for tech in pypsa_totals.index:\n", " if tech not in entsoe_totals.index:\n", " entsoe_totals.loc[tech] = 0.0\n", "\n", "totals[\"Pypsa\"] = pypsa_totals\n", "totals[\"Entsoe\"] = entsoe_totals\n", "totals[\"Technology\"] = totals.index\n", "\n", "totals = pd.concat(\n", " [\n", " pd.DataFrame(\n", " {\n", " \"Source\": [\"PyPSA\" for _ in range(len(pypsa_totals))],\n", " \"Technology\": pypsa_totals.index,\n", " \"Total Generation\": pypsa_totals.values,\n", " }\n", " ),\n", " pd.DataFrame(\n", " {\n", " \"Source\": [\"ENTSO-E\" for _ in range(len(entsoe_totals))],\n", " \"Technology\": entsoe_totals.index,\n", " \"Total Generation\": entsoe_totals.values,\n", " }\n", " ),\n", " ],\n", " axis=0,\n", ")\n", "\n", "\n", "sns.barplot(\n", " data=totals,\n", " x=\"Technology\",\n", " y=\"Total Generation\",\n", " hue=\"Source\",\n", " ax=ax,\n", " palette=\"dark\",\n", " alpha=0.6,\n", " edgecolor=\"k\",\n", ")\n", "ax.set_ylabel(\"Total Generation [TWh]\")\n", "ax.set_xticks(ax.get_xticks(), ax.get_xticklabels(), rotation=45, ha=\"right\")\n", "plt.savefig(plot_path / \"EuropeTotalGeneration.pdf\")\n", "plt.show()\n", "\n", "pypsa_total_inflow = pypsa_total_inflow.drop(columns=[\"Inflow Links\", \"Inflow Lines\"])\n", "pypsa_total_outflow = pypsa_total_outflow.drop(\n", " columns=[\"Outflow Links\", \"Outflow Lines\"]\n", ")\n", "entsoe_total_inflow = entsoe_total_inflow.drop(columns=[\"Inflow Links\", \"Inflow Lines\"])\n", "\n", "start = pd.Timestamp(\"2019-01-01\") # for small time frame\n", "end = pd.Timestamp(\"2019-01-14\")\n", "coarse_freq = \"3d\"\n", "\n", "index = load.loc[start:end].index\n", "cols = pypsa_total_inflow.std(axis=0).sort_values(ascending=True).index\n", "cols_out = pypsa_total_outflow.std(axis=0).sort_values(ascending=False).index\n", "\n", "fig, axs = plt.subplots(4, 2, figsize=(20, 30))\n", "\n", "axs[0, 0].stackplot(\n", " index,\n", " *[entsoe_total_inflow[col].loc[start:end].values for col in cols],\n", " colors=color_mapper.loc[cols].tolist(),\n", ")\n", "\n", "axs[0, 1].stackplot(\n", " index,\n", " *[pypsa_total_inflow[col].loc[start:end].values for col in cols],\n", " colors=color_mapper.loc[cols].tolist(),\n", ")\n", "axs[0, 1].stackplot(\n", " index,\n", " *[pypsa_total_outflow[col].loc[start:end].values for col in cols_out],\n", " colors=color_mapper.loc[cols_out].tolist(),\n", ")\n", "\n", "entsoe_total_inflow = entsoe_total_inflow.resample(coarse_freq).mean()\n", "pypsa_total_inflow = pypsa_total_inflow.resample(coarse_freq).mean()\n", "pypsa_total_outflow = pypsa_total_outflow.resample(coarse_freq).mean()\n", "\n", "index = pypsa_total_inflow.index\n", "\n", "axs[1, 0].stackplot(\n", " index,\n", " *[entsoe_total_inflow[col].values for col in cols],\n", " colors=color_mapper.loc[cols].tolist(),\n", ")\n", "\n", "axs[1, 1].stackplot(\n", " index,\n", " *[pypsa_total_inflow[col].values for col in cols],\n", " colors=color_mapper.loc[cols].tolist(),\n", ")\n", "axs[1, 1].stackplot(\n", " index,\n", " *[pypsa_total_outflow[col].values for col in cols_out],\n", " colors=color_mapper.loc[cols_out].tolist(),\n", ")\n", "\n", "for ax in axs[:3].flatten():\n", " ax.set_ylim(-100, 400)\n", "\n", "\n", "total_entsoe_ddf = pd.concat(\n", " [\n", " entsoe_total_inflow[col].sort_values(ascending=False).reset_index(drop=True)\n", " for col in entsoe_total_inflow.columns\n", " ],\n", " axis=1,\n", ")\n", "axs[2, 0].stackplot(\n", " range(len(total_entsoe_ddf)),\n", " *[total_entsoe_ddf[col].values for col in total_entsoe_ddf.columns],\n", " colors=color_mapper.loc[total_entsoe_ddf.columns].tolist(),\n", " labels=total_entsoe_ddf.columns,\n", ")\n", "\n", "total_pypsa_ddf = pd.concat(\n", " [\n", " pypsa_total_inflow[col].sort_values(ascending=False).reset_index(drop=True)\n", " for col in pypsa_total_inflow.columns\n", " ],\n", " axis=1,\n", ")\n", "axs[2, 1].stackplot(\n", " range(len(total_pypsa_ddf)),\n", " *[total_pypsa_ddf[col].values for col in total_pypsa_ddf.columns],\n", " colors=color_mapper.loc[total_pypsa_ddf.columns].tolist(),\n", " labels=total_pypsa_ddf.columns,\n", ")\n", "\n", "total_pypsa_ddf = pd.concat(\n", " [\n", " pypsa_total_outflow[col].sort_values(ascending=False).reset_index(drop=True)\n", " for col in pypsa_total_outflow.columns\n", " ],\n", " axis=1,\n", ")\n", "axs[2, 1].stackplot(\n", " range(len(total_pypsa_ddf)),\n", " *[total_pypsa_ddf[col].values for col in total_pypsa_ddf.columns],\n", " colors=color_mapper.loc[total_pypsa_ddf.columns].tolist(),\n", " labels=total_pypsa_ddf.columns,\n", ")\n", "axs[2, 0].legend(\n", " loc=\"upper center\", bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=5\n", ")\n", "\n", "total_prices = (\n", " n.buses_t.marginal_price.multiply(n.loads_t.p_set)\n", " .sum(axis=1)\n", " .divide(n.loads_t.p_set.sum(axis=1))\n", ")\n", "\n", "total_entsoe_prices = None\n", "\n", "for num, country in tqdm(enumerate(os.listdir(data_path / \"pypsa_data\"))):\n", " cc = country[:2]\n", " country_buses = np.unique(\n", " n.generators.loc[n.generators.bus.str.contains(cc)].bus.values\n", " )\n", "\n", " if not len(country_buses) == 1:\n", " continue\n", "\n", " bus = country_buses[0]\n", "\n", " try:\n", " entsoe_prices = pd.read_csv(\n", " data_path / \"price_data\" / country,\n", " index_col=0,\n", " parse_dates=True,\n", " ).iloc[:-1]\n", " entsoe_prices.index = n.loads_t.p_set.index\n", "\n", " def make_tz_time(time):\n", " return pd.Timestamp(time).tz_convert(\"utc\")\n", "\n", " except FileNotFoundError:\n", " continue\n", "\n", " if total_entsoe_prices is None:\n", " total_entsoe_prices = pd.Series(\n", " np.zeros(len(entsoe_prices)), index=entsoe_prices.index\n", " )\n", "\n", " total_entsoe_prices += entsoe_prices.iloc[:, 0] * n.loads_t.p_set[bus]\n", "\n", "total_entsoe_prices /= n.loads_t.p_set.sum(axis=1)\n", "\n", "error = np.around(\n", " mean_absolute_error(total_entsoe_prices.values, total_prices.values), decimals=2\n", ")\n", "\n", "axs[3, 0].plot(\n", " total_prices.loc[start:end].index,\n", " total_prices.loc[start:end].values,\n", " label=\"PyPSA Marginal Price\",\n", ")\n", "axs[3, 0].plot(\n", " total_prices.loc[start:end].index,\n", " total_entsoe_prices.loc[start:end].values,\n", " label=\"ENTSO-E\",\n", ")\n", "axs[3, 1].set_title(f\"Mean Abs Error {error} [Euro/MWh]\")\n", "axs[3, 0].legend()\n", "\n", "total_prices = total_prices.resample(coarse_freq).mean()\n", "total_entsoe_prices = total_entsoe_prices.resample(coarse_freq).mean()\n", "\n", "axs[3, 1].plot(total_prices.index, total_prices.values, label=f\"PyPSA Marginal Price\")\n", "axs[3, 1].plot(total_prices.index, total_entsoe_prices.values, label=\"ENTSO-E Price\")\n", "\n", "axs[3, 1].legend()\n", "\n", "for ax in axs[:3, 0]:\n", " ax.set_ylabel(\"ENTSO-E Generation [GWh]\")\n", "for ax in axs[:3, 1]:\n", " ax.set_ylabel(\"PyPSA Generation [GWh]\")\n", "for ax in axs[:2].flatten():\n", " ax.set_xlabel(\"Datetime\")\n", "for ax in axs[3]:\n", " ax.set_xlabel(\"Datetime\")\n", " ax.set_ylabel(\"Cost of Electricity [Euro/MWh]\")\n", "for ax in axs[2]:\n", " ax.set_xlabel(\"Hour\")\n", "\n", "plt.savefig(plot_path / \"EuropeDashboard.pdf\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "", "language": "python", "name": "" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }