# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build temperature profiles. """ import atlite import geopandas as gpd import numpy as np import pandas as pd import xarray as xr from dask.distributed import Client, LocalCluster if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "build_temperature_profiles", simpl="", clusters=48, ) nprocesses = int(snakemake.threads) cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) client = Client(cluster, asynchronous=True) time = pd.date_range(freq="h", **snakemake.config["snapshots"]) cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time) clustered_regions = ( gpd.read_file(snakemake.input.regions_onshore) .set_index("name") .buffer(0) .squeeze() ) I = cutout.indicatormatrix(clustered_regions) pop_layout = xr.open_dataarray(snakemake.input.pop_layout) stacked_pop = pop_layout.stack(spatial=("y", "x")) M = I.T.dot(np.diag(I.dot(stacked_pop))) nonzero_sum = M.sum(axis=0, keepdims=True) nonzero_sum[nonzero_sum == 0.0] = 1.0 M_tilde = M / nonzero_sum temp_air = cutout.temperature( matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False, ) temp_air.to_netcdf(snakemake.output.temp_air) temp_soil = cutout.soil_temperature( matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False, ) temp_soil.to_netcdf(snakemake.output.temp_soil)