# coding: utf-8 import logging import pandas as pd from scipy.spatial import cKDTree as KDTree import pypsa import powerplantmatching as ppm if 'snakemake' not in globals(): from vresutils.snakemake import MockSnakemake, Dict snakemake = MockSnakemake( input=Dict(base_network='networks/base.nc'), output=['resources/powerplants.csv'] ) logging.basicConfig(level=snakemake.config['logging_level']) n = pypsa.Network(snakemake.input.base_network) ppl = (ppm.collection.matched_data() [lambda df : ~df.Fueltype.isin(('Solar', 'Wind'))] .pipe(ppm.cleaning.clean_technology) .assign(Fueltype=lambda df: ( df.Fueltype.where(df.Fueltype != 'Natural Gas', df.Technology.replace('Steam Turbine', 'OCGT').fillna('OCGT')))) .pipe(ppm.utils.fill_geoposition, parse=True, only_saved_locs=True) .pipe(ppm.heuristics.fill_missing_duration)) # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('CCGT'), 'Fueltype'] = 'CCGT' # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('Steam Turbine'), 'Fueltype'] = 'CCGT' ppl = ppl.loc[ppl.lon.notnull() & ppl.lat.notnull()] substation_lv_i = n.buses.index[n.buses['substation_lv']] kdtree = KDTree(n.buses.loc[substation_lv_i, ['x','y']].values) ppl = ppl.assign(bus=substation_lv_i[kdtree.query(ppl[['lon','lat']].values)[1]]) ppl.to_csv(snakemake.output[0])