import pandas as pd import numpy as np tj_to_ktoe = 0.0238845 ktoe_to_twh = 0.01163 eb_base_dir = "data/eurostat-energy_balances-may_2018_edition" jrc_base_dir = "data/jrc-idees-2015" # import EU ratios df as csv industry_sector_ratios=pd.read_csv(snakemake.input.industry_sector_ratios, index_col=0) #material demand per country and industry (kton/a) countries_production = pd.read_csv(snakemake.input.industrial_production_per_country, index_col=0) #Annual energy consumption in Switzerland by sector in 2015 (in TJ) #From: Energieverbrauch in der Industrie und im Dienstleistungssektor, Der Bundesrat #http://www.bfe.admin.ch/themen/00526/00541/00543/index.html?lang=de&dossier_id=00775 dic_Switzerland ={'Iron and steel': 7889., 'Chemicals Industry': 26871., 'Non-metallic mineral products': 15513.+3820., 'Pulp, paper and printing': 12004., 'Food, beverages and tobacco': 17728., 'Non Ferrous Metals': 3037., 'Transport Equipment': 14993., 'Machinery Equipment': 4724., 'Textiles and leather': 1742., 'Wood and wood products': 0., 'Other Industrial Sectors': 10825., 'current electricity': 53760.} eb_names={'NO':'Norway', 'AL':'Albania', 'BA':'Bosnia and Herzegovina', 'MK':'FYR of Macedonia', 'GE':'Georgia', 'IS':'Iceland', 'KO':'Kosovo', 'MD':'Moldova', 'ME':'Montenegro', 'RS':'Serbia', 'UA':'Ukraine', 'TR':'Turkey', } jrc_names = {"GR" : "EL", "GB" : "UK"} #final energy consumption per country and industry (TWh/a) countries_df = countries_production.dot(industry_sector_ratios.T) countries_df*= 0.001 #GWh -> TWh (ktCO2 -> MtCO2) non_EU = ['NO', 'CH', 'ME', 'MK', 'RS', 'BA', 'AL'] # save current electricity consumption for country in countries_df.index: if country in non_EU: if country == 'CH': countries_df.loc[country, 'current electricity']=dic_Switzerland['current electricity']*tj_to_ktoe*ktoe_to_twh else: excel_balances = pd.read_excel('{}/{}.XLSX'.format(eb_base_dir,eb_names[country]), sheet_name='2016', index_col=1,header=0, skiprows=1 ,squeeze=True) countries_df.loc[country, 'current electricity'] = excel_balances.loc['Industry', 'Electricity']*ktoe_to_twh else: excel_out = pd.read_excel('{}/JRC-IDEES-2015_Industry_{}.xlsx'.format(jrc_base_dir,jrc_names.get(country,country)), sheet_name='Ind_Summary',index_col=0,header=0,squeeze=True) # the summary sheet s_out = excel_out.iloc[27:48,-1] countries_df.loc[country, 'current electricity'] = s_out['Electricity']*ktoe_to_twh rename_sectors = {'elec':'electricity', 'biomass':'solid biomass', 'heat':'low-temperature heat'} countries_df.rename(columns=rename_sectors,inplace=True) countries_df.index.name = "TWh/a (MtCO2/a)" countries_df.to_csv(snakemake.output.industrial_energy_demand_per_country, float_format='%.2f')