# -*- coding: utf-8 -*-
# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors
#
# SPDX-License-Identifier: MIT
"""
Create summary CSV files for all scenario runs including costs, capacities,
capacity factors, curtailment, energy balances, prices and other metrics.
"""

import logging
import sys

import numpy as np
import pandas as pd
import pypsa
from _helpers import configure_logging, get_snapshots, set_scenario_config
from prepare_sector_network import prepare_costs

idx = pd.IndexSlice
logger = logging.getLogger(__name__)
opt_name = {"Store": "e", "Line": "s", "Transformer": "s"}


def assign_carriers(n):
    if "carrier" not in n.lines:
        n.lines["carrier"] = "AC"


def assign_locations(n):
    for c in n.iterate_components(n.one_port_components | n.branch_components):
        ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index)
        for i in ifind.unique():
            names = ifind.index[ifind == i]
            c.df.loc[names, "location"] = "" if i == -1 else names.str[:i]


def calculate_nodal_cfs(n, label, nodal_cfs):
    # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
    for c in n.iterate_components(
        (n.branch_components ^ {"Line", "Transformer"})
        | n.controllable_one_port_components ^ {"Load", "StorageUnit"}
    ):
        capacities_c = c.df.groupby(["location", "carrier"])[
            opt_name.get(c.name, "p") + "_nom_opt"
        ].sum()

        if c.name == "Link":
            p = c.pnl.p0.abs().mean()
        elif c.name == "Generator":
            p = c.pnl.p.abs().mean()
        elif c.name == "Store":
            p = c.pnl.e.abs().mean()
        else:
            sys.exit()

        c.df["p"] = p
        p_c = c.df.groupby(["location", "carrier"])["p"].sum()

        cf_c = p_c / capacities_c

        index = pd.MultiIndex.from_tuples(
            [(c.list_name,) + t for t in cf_c.index.to_list()]
        )
        nodal_cfs = nodal_cfs.reindex(index.union(nodal_cfs.index))
        nodal_cfs.loc[index, label] = cf_c.values

    return nodal_cfs


def calculate_cfs(n, label, cfs):
    for c in n.iterate_components(
        n.branch_components
        | n.controllable_one_port_components ^ {"Load", "StorageUnit"}
    ):
        capacities_c = (
            c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum()
        )

        if c.name in ["Link", "Line", "Transformer"]:
            p = c.pnl.p0.abs().mean()
        elif c.name == "Store":
            p = c.pnl.e.abs().mean()
        else:
            p = c.pnl.p.abs().mean()

        p_c = p.groupby(c.df.carrier).sum()

        cf_c = p_c / capacities_c

        cf_c = pd.concat([cf_c], keys=[c.list_name])

        cfs = cfs.reindex(cf_c.index.union(cfs.index))

        cfs.loc[cf_c.index, label] = cf_c

    return cfs


def calculate_nodal_costs(n, label, nodal_costs):
    # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
    for c in n.iterate_components(
        n.branch_components | n.controllable_one_port_components ^ {"Load"}
    ):
        c.df["capital_costs"] = (
            c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
        )
        capital_costs = c.df.groupby(["location", "carrier"])["capital_costs"].sum()
        index = pd.MultiIndex.from_tuples(
            [(c.list_name, "capital") + t for t in capital_costs.index.to_list()]
        )
        nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
        nodal_costs.loc[index, label] = capital_costs.values

        if c.name == "Link":
            p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
        elif c.name == "Line":
            continue
        elif c.name == "StorageUnit":
            p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
            p_all[p_all < 0.0] = 0.0
            p = p_all.sum()
        else:
            p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()

        # correct sequestration cost
        if c.name == "Store":
            items = c.df.index[
                (c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0)
            ]
            c.df.loc[items, "marginal_cost"] = -20.0

        c.df["marginal_costs"] = p * c.df.marginal_cost
        marginal_costs = c.df.groupby(["location", "carrier"])["marginal_costs"].sum()
        index = pd.MultiIndex.from_tuples(
            [(c.list_name, "marginal") + t for t in marginal_costs.index.to_list()]
        )
        nodal_costs = nodal_costs.reindex(index.union(nodal_costs.index))
        nodal_costs.loc[index, label] = marginal_costs.values

    return nodal_costs


def calculate_costs(n, label, costs):
    for c in n.iterate_components(
        n.branch_components | n.controllable_one_port_components ^ {"Load"}
    ):
        capital_costs = c.df.capital_cost * c.df[opt_name.get(c.name, "p") + "_nom_opt"]
        capital_costs_grouped = capital_costs.groupby(c.df.carrier).sum()

        capital_costs_grouped = pd.concat([capital_costs_grouped], keys=["capital"])
        capital_costs_grouped = pd.concat([capital_costs_grouped], keys=[c.list_name])

        costs = costs.reindex(capital_costs_grouped.index.union(costs.index))

        costs.loc[capital_costs_grouped.index, label] = capital_costs_grouped

        if c.name == "Link":
            p = c.pnl.p0.multiply(n.snapshot_weightings.generators, axis=0).sum()
        elif c.name == "Line":
            continue
        elif c.name == "StorageUnit":
            p_all = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
            p_all[p_all < 0.0] = 0.0
            p = p_all.sum()
        else:
            p = c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0).sum()

        # correct sequestration cost
        if c.name == "Store":
            items = c.df.index[
                (c.df.carrier == "co2 stored") & (c.df.marginal_cost <= -100.0)
            ]
            c.df.loc[items, "marginal_cost"] = -20.0

        marginal_costs = p * c.df.marginal_cost

        marginal_costs_grouped = marginal_costs.groupby(c.df.carrier).sum()

        marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=["marginal"])
        marginal_costs_grouped = pd.concat([marginal_costs_grouped], keys=[c.list_name])

        costs = costs.reindex(marginal_costs_grouped.index.union(costs.index))

        costs.loc[marginal_costs_grouped.index, label] = marginal_costs_grouped

    # add back in all hydro
    # costs.loc[("storage_units", "capital", "hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro", "p_nom"].sum()
    # costs.loc[("storage_units", "capital", "PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS", "p_nom"].sum()
    # costs.loc[("generators", "capital", "ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror", "p_nom"].sum()

    return costs


def calculate_cumulative_cost():
    planning_horizons = snakemake.params.scenario["planning_horizons"]

    cumulative_cost = pd.DataFrame(
        index=df["costs"].sum().index,
        columns=pd.Series(data=np.arange(0, 0.1, 0.01), name="social discount rate"),
    )

    # discount cost and express them in money value of planning_horizons[0]
    for r in cumulative_cost.columns:
        cumulative_cost[r] = [
            df["costs"].sum()[index] / ((1 + r) ** (index[-1] - planning_horizons[0]))
            for index in cumulative_cost.index
        ]

    # integrate cost throughout the transition path
    for r in cumulative_cost.columns:
        for cluster in cumulative_cost.index.get_level_values(level=0).unique():
            for ll in cumulative_cost.index.get_level_values(level=1).unique():
                for sector_opts in cumulative_cost.index.get_level_values(
                    level=2
                ).unique():
                    cumulative_cost.loc[
                        (cluster, ll, sector_opts, "cumulative cost"), r
                    ] = np.trapz(
                        cumulative_cost.loc[
                            idx[cluster, ll, sector_opts, planning_horizons], r
                        ].values,
                        x=planning_horizons,
                    )

    return cumulative_cost


def calculate_nodal_capacities(n, label, nodal_capacities):
    # Beware this also has extraneous locations for country (e.g. biomass) or continent-wide (e.g. fossil gas/oil) stuff
    for c in n.iterate_components(
        n.branch_components | n.controllable_one_port_components ^ {"Load"}
    ):
        nodal_capacities_c = c.df.groupby(["location", "carrier"])[
            opt_name.get(c.name, "p") + "_nom_opt"
        ].sum()
        index = pd.MultiIndex.from_tuples(
            [(c.list_name,) + t for t in nodal_capacities_c.index.to_list()]
        )
        nodal_capacities = nodal_capacities.reindex(index.union(nodal_capacities.index))
        nodal_capacities.loc[index, label] = nodal_capacities_c.values

    return nodal_capacities


def calculate_capacities(n, label, capacities):
    for c in n.iterate_components(
        n.branch_components | n.controllable_one_port_components ^ {"Load"}
    ):
        capacities_grouped = (
            c.df[opt_name.get(c.name, "p") + "_nom_opt"].groupby(c.df.carrier).sum()
        )
        capacities_grouped = pd.concat([capacities_grouped], keys=[c.list_name])

        capacities = capacities.reindex(
            capacities_grouped.index.union(capacities.index)
        )

        capacities.loc[capacities_grouped.index, label] = capacities_grouped

    return capacities


def calculate_curtailment(n, label, curtailment):
    avail = (
        n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt)
        .sum()
        .groupby(n.generators.carrier)
        .sum()
    )
    used = n.generators_t.p.sum().groupby(n.generators.carrier).sum()

    curtailment[label] = (((avail - used) / avail) * 100).round(3)

    return curtailment


def calculate_energy(n, label, energy):
    for c in n.iterate_components(n.one_port_components | n.branch_components):
        if c.name in n.one_port_components:
            c_energies = (
                c.pnl.p.multiply(n.snapshot_weightings.generators, axis=0)
                .sum()
                .multiply(c.df.sign)
                .groupby(c.df.carrier)
                .sum()
            )
        else:
            c_energies = pd.Series(0.0, c.df.carrier.unique())
            for port in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
                totals = (
                    c.pnl["p" + port]
                    .multiply(n.snapshot_weightings.generators, axis=0)
                    .sum()
                )
                # remove values where bus is missing (bug in nomopyomo)
                no_bus = c.df.index[c.df["bus" + port] == ""]
                totals.loc[no_bus] = float(
                    n.component_attrs[c.name].loc["p" + port, "default"]
                )
                c_energies -= totals.groupby(c.df.carrier).sum()

        c_energies = pd.concat([c_energies], keys=[c.list_name])

        energy = energy.reindex(c_energies.index.union(energy.index))

        energy.loc[c_energies.index, label] = c_energies

    return energy


def calculate_supply(n, label, supply):
    """
    Calculate the max dispatch of each component at the buses aggregated by
    carrier.
    """
    bus_carriers = n.buses.carrier.unique()

    for i in bus_carriers:
        bus_map = n.buses.carrier == i
        bus_map.at[""] = False

        for c in n.iterate_components(n.one_port_components):
            items = c.df.index[c.df.bus.map(bus_map).fillna(False)]

            if len(items) == 0:
                continue

            s = (
                c.pnl.p[items]
                .max()
                .multiply(c.df.loc[items, "sign"])
                .groupby(c.df.loc[items, "carrier"])
                .sum()
            )
            s = pd.concat([s], keys=[c.list_name])
            s = pd.concat([s], keys=[i])

            supply = supply.reindex(s.index.union(supply.index))
            supply.loc[s.index, label] = s

        for c in n.iterate_components(n.branch_components):
            for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
                items = c.df.index[c.df["bus" + end].map(bus_map).fillna(False)]

                if len(items) == 0:
                    continue

                # lots of sign compensation for direction and to do maximums
                s = (-1) ** (1 - int(end)) * (
                    (-1) ** int(end) * c.pnl["p" + end][items]
                ).max().groupby(c.df.loc[items, "carrier"]).sum()
                s.index = s.index + end
                s = pd.concat([s], keys=[c.list_name])
                s = pd.concat([s], keys=[i])

                supply = supply.reindex(s.index.union(supply.index))
                supply.loc[s.index, label] = s

    return supply


def calculate_supply_energy(n, label, supply_energy):
    """
    Calculate the total energy supply/consuption of each component at the buses
    aggregated by carrier.
    """
    bus_carriers = n.buses.carrier.unique()

    for i in bus_carriers:
        bus_map = n.buses.carrier == i
        bus_map.at[""] = False

        for c in n.iterate_components(n.one_port_components):
            items = c.df.index[c.df.bus.map(bus_map).fillna(False)]

            if len(items) == 0:
                continue

            s = (
                c.pnl.p[items]
                .multiply(n.snapshot_weightings.generators, axis=0)
                .sum()
                .multiply(c.df.loc[items, "sign"])
                .groupby(c.df.loc[items, "carrier"])
                .sum()
            )
            s = pd.concat([s], keys=[c.list_name])
            s = pd.concat([s], keys=[i])

            supply_energy = supply_energy.reindex(s.index.union(supply_energy.index))
            supply_energy.loc[s.index, label] = s

        for c in n.iterate_components(n.branch_components):
            for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
                items = c.df.index[c.df[f"bus{str(end)}"].map(bus_map).fillna(False)]

                if len(items) == 0:
                    continue

                s = (-1) * c.pnl["p" + end][items].multiply(
                    n.snapshot_weightings.generators, axis=0
                ).sum().groupby(c.df.loc[items, "carrier"]).sum()
                s.index = s.index + end
                s = pd.concat([s], keys=[c.list_name])
                s = pd.concat([s], keys=[i])

                supply_energy = supply_energy.reindex(
                    s.index.union(supply_energy.index)
                )

                supply_energy.loc[s.index, label] = s

    return supply_energy


def calculate_nodal_supply_energy(n, label, nodal_supply_energy):
    """
    Calculate the total energy supply/consumption of each component at the
    buses aggregated by carrier and node.
    """

    bus_carriers = n.buses.carrier.unique()

    for i in bus_carriers:
        bus_map = n.buses.carrier == i
        bus_map.at[""] = False

        for c in n.iterate_components(n.one_port_components):
            items = c.df.index[c.df.bus.map(bus_map).fillna(False)]

            if len(items) == 0:
                continue

            s = (
                pd.concat(
                    [
                        (
                            c.pnl.p[items]
                            .multiply(n.snapshot_weightings.generators, axis=0)
                            .sum()
                            .multiply(c.df.loc[items, "sign"])
                        ),
                        c.df.loc[items][["bus", "carrier"]],
                    ],
                    axis=1,
                )
                .groupby(by=["bus", "carrier"])
                .sum()[0]
            )
            s = pd.concat([s], keys=[c.list_name])
            s = pd.concat([s], keys=[i])

            nodal_supply_energy = nodal_supply_energy.reindex(
                s.index.union(nodal_supply_energy.index)
            )
            nodal_supply_energy.loc[s.index, label] = s

        for c in n.iterate_components(n.branch_components):
            for end in [col[3:] for col in c.df.columns if col[:3] == "bus"]:
                items = c.df.index[c.df["bus" + str(end)].map(bus_map).fillna(False)]

                if (len(items) == 0) or c.pnl["p" + end].empty:
                    continue

                s = (
                    pd.concat(
                        [
                            (
                                (-1)
                                * c.pnl["p" + end][items]
                                .multiply(n.snapshot_weightings.generators, axis=0)
                                .sum()
                            ),
                            c.df.loc[items][["bus0", "carrier"]],
                        ],
                        axis=1,
                    )
                    .groupby(by=["bus0", "carrier"])
                    .sum()[0]
                )

                s.index = s.index.map(lambda x: (x[0], x[1] + end))
                s = pd.concat([s], keys=[c.list_name])
                s = pd.concat([s], keys=[i])

                nodal_supply_energy = nodal_supply_energy.reindex(
                    s.index.union(nodal_supply_energy.index)
                )

                nodal_supply_energy.loc[s.index, label] = s

    return nodal_supply_energy


def calculate_metrics(n, label, metrics):
    metrics_list = [
        "line_volume",
        "line_volume_limit",
        "line_volume_AC",
        "line_volume_DC",
        "line_volume_shadow",
        "co2_shadow",
    ]

    metrics = metrics.reindex(pd.Index(metrics_list).union(metrics.index))

    metrics.at["line_volume_DC", label] = (n.links.length * n.links.p_nom_opt)[
        n.links.carrier == "DC"
    ].sum()
    metrics.at["line_volume_AC", label] = (n.lines.length * n.lines.s_nom_opt).sum()
    metrics.at["line_volume", label] = metrics.loc[
        ["line_volume_AC", "line_volume_DC"], label
    ].sum()

    if "lv_limit" in n.global_constraints.index:
        metrics.at["line_volume_limit", label] = n.global_constraints.at[
            "lv_limit", "constant"
        ]
        metrics.at["line_volume_shadow", label] = n.global_constraints.at[
            "lv_limit", "mu"
        ]

    if "CO2Limit" in n.global_constraints.index:
        metrics.at["co2_shadow", label] = n.global_constraints.at["CO2Limit", "mu"]

    if "co2_sequestration_limit" in n.global_constraints.index:
        metrics.at["co2_storage_shadow", label] = n.global_constraints.at[
            "co2_sequestration_limit", "mu"
        ]
    return metrics


def calculate_prices(n, label, prices):
    prices = prices.reindex(prices.index.union(n.buses.carrier.unique()))

    # WARNING: this is time-averaged, see weighted_prices for load-weighted average
    prices[label] = n.buses_t.marginal_price.mean().groupby(n.buses.carrier).mean()

    return prices


def calculate_weighted_prices(n, label, weighted_prices):
    # Warning: doesn't include storage units as loads

    weighted_prices = weighted_prices.reindex(
        pd.Index(
            [
                "electricity",
                "heat",
                "space heat",
                "urban heat",
                "space urban heat",
                "gas",
                "H2",
            ]
        )
    )

    link_loads = {
        "electricity": [
            "heat pump",
            "resistive heater",
            "battery charger",
            "H2 Electrolysis",
        ],
        "heat": ["water tanks charger"],
        "urban heat": ["water tanks charger"],
        "space heat": [],
        "space urban heat": [],
        "gas": ["OCGT", "gas boiler", "CHP electric", "CHP heat"],
        "H2": ["Sabatier", "H2 Fuel Cell"],
    }

    for carrier, value in link_loads.items():
        if carrier == "electricity":
            suffix = ""
        elif carrier[:5] == "space":
            suffix = carrier[5:]
        else:
            suffix = " " + carrier

        buses = n.buses.index[n.buses.index.str[2:] == suffix]

        if buses.empty:
            continue

        if carrier in ["H2", "gas"]:
            load = pd.DataFrame(index=n.snapshots, columns=buses, data=0.0)
        else:
            load = n.loads_t.p_set[buses.intersection(n.loads.index)]

        for tech in value:
            names = n.links.index[n.links.index.to_series().str[-len(tech) :] == tech]

            if not names.empty:
                load += (
                    n.links_t.p0[names].T.groupby(n.links.loc[names, "bus0"]).sum().T
                )

        # Add H2 Store when charging
        # if carrier == "H2":
        #    stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store", "bus"],axis=1).sum(axis=1)
        #    stores[stores > 0.] = 0.
        #    load += -stores

        weighted_prices.loc[carrier, label] = (
            load * n.buses_t.marginal_price[buses]
        ).sum().sum() / load.sum().sum()

        # still have no idea what this is for, only for debug reasons.
        if carrier[:5] == "space":
            logger.debug(load * n.buses_t.marginal_price[buses])

    return weighted_prices


def calculate_market_values(n, label, market_values):
    # Warning: doesn't include storage units

    carrier = "AC"

    buses = n.buses.index[n.buses.carrier == carrier]

    ## First do market value of generators ##

    generators = n.generators.index[n.buses.loc[n.generators.bus, "carrier"] == carrier]

    techs = n.generators.loc[generators, "carrier"].value_counts().index

    market_values = market_values.reindex(market_values.index.union(techs))

    for tech in techs:
        gens = generators[n.generators.loc[generators, "carrier"] == tech]

        dispatch = (
            n.generators_t.p[gens]
            .T.groupby(n.generators.loc[gens, "bus"])
            .sum()
            .T.reindex(columns=buses, fill_value=0.0)
        )
        revenue = dispatch * n.buses_t.marginal_price[buses]

        if total_dispatch := dispatch.sum().sum():
            market_values.at[tech, label] = revenue.sum().sum() / total_dispatch
        else:
            market_values.at[tech, label] = np.nan

    ## Now do market value of links ##

    for i in ["0", "1"]:
        all_links = n.links.index[n.buses.loc[n.links["bus" + i], "carrier"] == carrier]

        techs = n.links.loc[all_links, "carrier"].value_counts().index

        market_values = market_values.reindex(market_values.index.union(techs))

        for tech in techs:
            links = all_links[n.links.loc[all_links, "carrier"] == tech]

            dispatch = (
                n.links_t["p" + i][links]
                .T.groupby(n.links.loc[links, "bus" + i])
                .sum()
                .T.reindex(columns=buses, fill_value=0.0)
            )

            revenue = dispatch * n.buses_t.marginal_price[buses]

            if total_dispatch := dispatch.sum().sum():
                market_values.at[tech, label] = revenue.sum().sum() / total_dispatch
            else:
                market_values.at[tech, label] = np.nan

    return market_values


def calculate_price_statistics(n, label, price_statistics):
    price_statistics = price_statistics.reindex(
        price_statistics.index.union(
            pd.Index(["zero_hours", "mean", "standard_deviation"])
        )
    )

    buses = n.buses.index[n.buses.carrier == "AC"]

    threshold = 0.1  # higher than phoney marginal_cost of wind/solar

    df = pd.DataFrame(data=0.0, columns=buses, index=n.snapshots)

    df[n.buses_t.marginal_price[buses] < threshold] = 1.0

    price_statistics.at["zero_hours", label] = df.sum().sum() / (
        df.shape[0] * df.shape[1]
    )

    price_statistics.at["mean", label] = (
        n.buses_t.marginal_price[buses].unstack().mean()
    )

    price_statistics.at["standard_deviation", label] = (
        n.buses_t.marginal_price[buses].unstack().std()
    )

    return price_statistics


def make_summaries(networks_dict):
    outputs = [
        "nodal_costs",
        "nodal_capacities",
        "nodal_cfs",
        "cfs",
        "costs",
        "capacities",
        "curtailment",
        "energy",
        "supply",
        "supply_energy",
        "nodal_supply_energy",
        "prices",
        "weighted_prices",
        "price_statistics",
        "market_values",
        "metrics",
    ]

    columns = pd.MultiIndex.from_tuples(
        networks_dict.keys(),
        names=["cluster", "ll", "opt", "planning_horizon"],
    )

    df = {output: pd.DataFrame(columns=columns, dtype=float) for output in outputs}
    for label, filename in networks_dict.items():
        logger.info(f"Make summary for scenario {label}, using {filename}")

        n = pypsa.Network(filename)

        assign_carriers(n)
        assign_locations(n)

        for output in outputs:
            df[output] = globals()["calculate_" + output](n, label, df[output])

    return df


def to_csv(df):
    for key in df:
        df[key].to_csv(snakemake.output[key])


if __name__ == "__main__":
    if "snakemake" not in globals():
        from _helpers import mock_snakemake

        snakemake = mock_snakemake("make_summary")

    configure_logging(snakemake)
    set_scenario_config(snakemake)

    networks_dict = {
        (cluster, ll, opt + sector_opt, planning_horizon): "results/"
        + snakemake.params.RDIR
        + f"/postnetworks/elec_s{simpl}_{cluster}_l{ll}_{opt}_{sector_opt}_{planning_horizon}.nc"
        for simpl in snakemake.params.scenario["simpl"]
        for cluster in snakemake.params.scenario["clusters"]
        for opt in snakemake.params.scenario["opts"]
        for sector_opt in snakemake.params.scenario["sector_opts"]
        for ll in snakemake.params.scenario["ll"]
        for planning_horizon in snakemake.params.scenario["planning_horizons"]
    }

    time = get_snapshots(snakemake.params.snapshots, snakemake.params.drop_leap_day)
    Nyears = len(time) / 8760

    costs_db = prepare_costs(
        snakemake.input.costs,
        snakemake.params.costs,
        Nyears,
    )

    df = make_summaries(networks_dict)

    df["metrics"].loc["total costs"] = df["costs"].sum()

    to_csv(df)

    if snakemake.params.foresight == "myopic":
        cumulative_cost = calculate_cumulative_cost()
        cumulative_cost.to_csv(
            "results/" + snakemake.params.RDIR + "csvs/cumulative_cost.csv"
        )