# coding: utf-8 import logging logger = logging.getLogger(__name__) import pandas as pd idx = pd.IndexSlice import numpy as np import scipy as sp import xarray as xr import re from six import iteritems import geopandas as gpd import pypsa from add_electricity import load_costs, update_transmission_costs def add_co2limit(n, Nyears=1., factor=None): if factor: annual_emissions = factor*snakemake.config['electricity']['co2base'] else: annual_emissions = snakemake.config['electricity']['co2limit'] n.add("GlobalConstraint", "CO2Limit", carrier_attribute="co2_emissions", sense="<=", constant=annual_emissions * Nyears) def add_emission_prices(n, emission_prices=None, exclude_co2=False): assert False, "Needs to be fixed, adds NAN" if emission_prices is None: emission_prices = snakemake.config['costs']['emission_prices'] if exclude_co2: emission_prices.pop('co2') ep = (pd.Series(emission_prices).rename(lambda x: x+'_emissions') * n.carriers).sum(axis=1) n.generators['marginal_cost'] += n.generators.carrier.map(ep) n.storage_units['marginal_cost'] += n.storage_units.carrier.map(ep) def set_line_s_max_pu(n): # set n-1 security margin to 0.5 for 37 clusters and to 0.7 from 200 clusters n_clusters = len(n.buses) s_max_pu = np.clip(0.5 + 0.2 * (n_clusters - 37) / (200 - 37), 0.5, 0.7) n.lines['s_max_pu'] = s_max_pu def set_line_cost_limit(n, lc, Nyears=1.): links_dc_b = n.links.carrier == 'DC' if not n.links.empty else pd.Series() lines_s_nom = n.lines.s_nom.where( n.lines.type == '', np.sqrt(3) * n.lines.num_parallel * n.lines.type.map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom) ) n.lines['capital_cost_lc'] = n.lines['capital_cost'] n.links['capital_cost_lc'] = n.links['capital_cost'] total_line_cost = ((lines_s_nom * n.lines['capital_cost_lc']).sum() + n.links.loc[links_dc_b].eval('p_nom * capital_cost_lc').sum()) if lc == 'opt': costs = load_costs(Nyears, snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity']) update_transmission_costs(n, costs, simple_hvdc_costs=False) else: # Either line_volume cap or cost n.lines['capital_cost'] = 0. n.links.loc[links_dc_b, 'capital_cost'] = 0. if lc == 'opt' or float(lc) > 1.0: n.lines['s_nom_min'] = lines_s_nom n.lines['s_nom_extendable'] = True n.links.loc[links_dc_b, 'p_nom_min'] = n.links.loc[links_dc_b, 'p_nom'] n.links.loc[links_dc_b, 'p_nom_extendable'] = True if lc != 'opt': n.line_cost_limit = float(lc) * total_line_cost return n def set_line_volume_limit(n, lv, Nyears=1.): links_dc_b = n.links.carrier == 'DC' if not n.links.empty else pd.Series() lines_s_nom = n.lines.s_nom.where( n.lines.type == '', np.sqrt(3) * n.lines.num_parallel * n.lines.type.map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom) ) total_line_volume = ((lines_s_nom * n.lines['length']).sum() + n.links.loc[links_dc_b].eval('p_nom * length').sum()) if lv == 'opt': costs = load_costs(Nyears, snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity']) update_transmission_costs(n, costs, simple_hvdc_costs=True) else: # Either line_volume cap or cost n.lines['capital_cost'] = 0. n.links.loc[links_dc_b, 'capital_cost'] = 0. if lv == 'opt' or float(lv) > 1.0: n.lines['s_nom_min'] = lines_s_nom n.lines['s_nom_extendable'] = True n.links.loc[links_dc_b, 'p_nom_min'] = n.links.loc[links_dc_b, 'p_nom'] n.links.loc[links_dc_b, 'p_nom_extendable'] = True if lv != 'opt': n.line_volume_limit = float(lv) * total_line_volume return n def average_every_nhours(n, offset): logger.info('Resampling the network to {}'.format(offset)) m = n.copy(with_time=False) snapshot_weightings = n.snapshot_weightings.resample(offset).sum() m.set_snapshots(snapshot_weightings.index) m.snapshot_weightings = snapshot_weightings for c in n.iterate_components(): pnl = getattr(m, c.list_name+"_t") for k, df in iteritems(c.pnl): if not df.empty: pnl[k] = df.resample(offset).mean() return m if __name__ == "__main__": # Detect running outside of snakemake and mock snakemake for testing if 'snakemake' not in globals(): from vresutils.snakemake import MockSnakemake snakemake = MockSnakemake( wildcards=dict(network='elec', simpl='', clusters='37', ll='v2', opts='Co2L-3H'), input=['networks/{network}_s{simpl}_{clusters}.nc'], output=['networks/{network}_s{simpl}_{clusters}_l{ll}_{opts}.nc'] ) logging.basicConfig(level=snakemake.config['logging_level']) opts = snakemake.wildcards.opts.split('-') n = pypsa.Network(snakemake.input[0]) Nyears = n.snapshot_weightings.sum()/8760. set_line_s_max_pu(n) for o in opts: m = re.match(r'^\d+h$', o, re.IGNORECASE) if m is not None: n = average_every_nhours(n, m.group(0)) break else: logger.info("No resampling") for o in opts: if "Co2L" in o: m = re.findall("[0-9]*\.?[0-9]+$", o) if len(m) > 0: add_co2limit(n, Nyears, float(m[0])) else: add_co2limit(n, Nyears) # if 'Ep' in opts: # add_emission_prices(n) ll_type, factor = snakemake.wildcards.ll[0], snakemake.wildcards.ll[1:] if ll_type == 'v': set_line_volume_limit(n, factor, Nyears) elif ll_type == 'c': set_line_cost_limit(n, factor, Nyears) n.export_to_netcdf(snakemake.output[0])