# coding: utf-8 import logging import numpy as np import pandas as pd from scipy.spatial import cKDTree as KDTree import pycountry as pyc import pypsa import powerplantmatching as ppm def country_alpha_2(name): try: cntry = pyc.countries.get(name=name) except KeyError: cntry = pyc.countries.get(official_name=name) return cntry.alpha_2 if 'snakemake' not in globals(): from vresutils.snakemake import MockSnakemake, Dict snakemake = MockSnakemake( input=Dict(base_network='networks/base.nc'), output=['resources/powerplants.csv'] ) logging.basicConfig(level=snakemake.config['logging_level']) n = pypsa.Network(snakemake.input.base_network) ppl = (ppm.collection.matched_data() [lambda df : ~df.Fueltype.isin(('Solar', 'Wind'))] .pipe(ppm.cleaning.clean_technology) .assign(Fueltype=lambda df: ( df.Fueltype.where(df.Fueltype != 'Natural Gas', df.Technology.replace('Steam Turbine', 'OCGT').fillna('OCGT')))) .pipe(ppm.utils.fill_geoposition)) # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('CCGT'), 'Fueltype'] = 'CCGT' # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('Steam Turbine'), 'Fueltype'] = 'CCGT' ppl = ppl.loc[ppl.lon.notnull() & ppl.lat.notnull()] ppl_country = ppl.Country.map(country_alpha_2) countries = n.buses.country.unique() cntries_without_ppl = [] for cntry in countries: substation_lv_i = n.buses.index[n.buses['substation_lv'] & (n.buses.country == cntry)] ppl_b = ppl_country == cntry if not ppl_b.any(): cntries_without_ppl.append(cntry) continue kdtree = KDTree(n.buses.loc[substation_lv_i, ['x','y']].values) ppl.loc[ppl_b, 'bus'] = substation_lv_i[kdtree.query(ppl.loc[ppl_b, ['lon','lat']].values)[1]] if cntries_without_ppl: logging.warning("No powerplants known in: {}".format(", ".join(cntries_without_ppl))) bus_null_b = ppl["bus"].isnull() if bus_null_b.any(): logging.warning("Couldn't find close bus for {} powerplants".format(bus_null_b.sum())) ppl.to_csv(snakemake.output[0])