# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build solar thermal collector time series. """ import atlite import geopandas as gpd import numpy as np import pandas as pd import xarray as xr from dask.distributed import Client, LocalCluster if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "build_solar_thermal_profiles", simpl="", clusters=48, ) nprocesses = int(snakemake.threads) cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) client = Client(cluster, asynchronous=True) config = snakemake.params.solar_thermal time = pd.date_range(freq="h", **snakemake.params.snapshots) cutout = atlite.Cutout(snakemake.input.cutout).sel(time=time) clustered_regions = ( gpd.read_file(snakemake.input.regions_onshore) .set_index("name") .buffer(0) .squeeze() ) I = cutout.indicatormatrix(clustered_regions) pop_layout = xr.open_dataarray(snakemake.input.pop_layout) stacked_pop = pop_layout.stack(spatial=("y", "x")) M = I.T.dot(np.diag(I.dot(stacked_pop))) nonzero_sum = M.sum(axis=0, keepdims=True) nonzero_sum[nonzero_sum == 0.0] = 1.0 M_tilde = M / nonzero_sum solar_thermal = cutout.solar_thermal( **config, matrix=M_tilde.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False ) solar_thermal.to_netcdf(snakemake.output.solar_thermal)