import pypsa import numpy as np import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs from matplotlib.legend_handler import HandlerPatch from matplotlib.patches import Circle, Ellipse from make_summary import assign_carriers from plot_summary import rename_techs, preferred_order from helper import override_component_attrs plt.style.use('ggplot') def rename_techs_tyndp(tech): tech = rename_techs(tech) if "heat pump" in tech or "resistive heater" in tech: return "power-to-heat" elif tech in ["H2 Electrolysis", "methanation", "helmeth", "H2 liquefaction"]: return "power-to-gas" elif tech == "H2": return "H2 storage" elif tech in ["NH3", "Haber-Bosch", "ammonia cracker", "ammonia store"]: return "ammonia" elif tech in ["OCGT", "CHP", "gas boiler", "H2 Fuel Cell"]: return "gas-to-power/heat" elif "solar" in tech: return "solar" elif tech == "Fischer-Tropsch": return "power-to-liquid" elif "offshore wind" in tech: return "offshore wind" elif "CC" in tech or "sequestration" in tech: return "CCS" else: return tech def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False): fig = ax.get_figure() def axes2pt(): return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * (72. / fig.dpi) ellipses = [] if not dont_resize_actively: def update_width_height(event): dist = axes2pt() for e, radius in ellipses: e.width, e.height = 2. * radius * dist fig.canvas.mpl_connect('resize_event', update_width_height) ax.callbacks.connect('xlim_changed', update_width_height) ax.callbacks.connect('ylim_changed', update_width_height) def legend_circle_handler(legend, orig_handle, xdescent, ydescent, width, height, fontsize): w, h = 2. * orig_handle.get_radius() * axes2pt() e = Ellipse(xy=(0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent), width=w, height=w) ellipses.append((e, orig_handle.get_radius())) return e return {Circle: HandlerPatch(patch_func=legend_circle_handler)} def make_legend_circles_for(sizes, scale=1.0, **kw): return [Circle((0, 0), radius=(s / scale)**0.5, **kw) for s in sizes] def assign_location(n): for c in n.iterate_components(n.one_port_components | n.branch_components): ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index) for i in ifind.value_counts().index: # these have already been assigned defaults if i == -1: continue names = ifind.index[ifind == i] c.df.loc[names, 'location'] = names.str[:i] def plot_map(network, components=["links", "stores", "storage_units", "generators"], bus_size_factor=1.7e10, transmission=False): n = network.copy() assign_location(n) # Drop non-electric buses so they don't clutter the plot n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) costs = pd.DataFrame(index=n.buses.index) for comp in components: df_c = getattr(n, comp) df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp) attr = "e_nom_opt" if comp == "stores" else "p_nom_opt" costs_c = ((df_c.capital_cost * df_c[attr]) .groupby([df_c.location, df_c.nice_group]).sum() .unstack().fillna(0.)) costs = pd.concat([costs, costs_c], axis=1) print(comp, costs) costs = costs.groupby(costs.columns, axis=1).sum() costs.drop(list(costs.columns[(costs == 0.).all()]), axis=1, inplace=True) new_columns = (preferred_order.intersection(costs.columns) .append(costs.columns.difference(preferred_order))) costs = costs[new_columns] for item in new_columns: if item not in snakemake.config['plotting']['tech_colors']: print("Warning!",item,"not in config/plotting/tech_colors") costs = costs.stack() # .sort_index() # hack because impossible to drop buses... eu_location = snakemake.config["plotting"].get("eu_node_location", dict(x=-5.5, y=46)) n.buses.loc["EU gas", "x"] = eu_location["x"] n.buses.loc["EU gas", "y"] = eu_location["y"] n.links.drop(n.links.index[(n.links.carrier != "DC") & ( n.links.carrier != "B2B")], inplace=True) # drop non-bus to_drop = costs.index.levels[0].symmetric_difference(n.buses.index) if len(to_drop) != 0: print("dropping non-buses", to_drop) costs.drop(to_drop, level=0, inplace=True, axis=0, errors="ignore") # make sure they are removed from index costs.index = pd.MultiIndex.from_tuples(costs.index.values) # PDF has minimum width, so set these to zero line_lower_threshold = 500. line_upper_threshold = 1e4 linewidth_factor = 2e3 ac_color = "gray" dc_color = "m" if snakemake.wildcards["lv"] == "1.0": # should be zero line_widths = n.lines.s_nom_opt - n.lines.s_nom link_widths = n.links.p_nom_opt - n.links.p_nom title = "Transmission reinforcement" if transmission: line_widths = n.lines.s_nom_opt link_widths = n.links.p_nom_opt linewidth_factor = 2e3 line_lower_threshold = 0. title = "Today's transmission" else: line_widths = n.lines.s_nom_opt - n.lines.s_nom_min link_widths = n.links.p_nom_opt - n.links.p_nom_min title = "Transmission reinforcement" if transmission: line_widths = n.lines.s_nom_opt link_widths = n.links.p_nom_opt title = "Total transmission" line_widths[line_widths < line_lower_threshold] = 0. link_widths[link_widths < line_lower_threshold] = 0. line_widths[line_widths > line_upper_threshold] = line_upper_threshold link_widths[link_widths > line_upper_threshold] = line_upper_threshold fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) fig.set_size_inches(7, 6) n.plot( bus_sizes=costs / bus_size_factor, bus_colors=snakemake.config['plotting']['tech_colors'], line_colors=ac_color, link_colors=dc_color, line_widths=line_widths / linewidth_factor, link_widths=link_widths / linewidth_factor, ax=ax, **map_opts ) handles = make_legend_circles_for( [5e9, 1e9], scale=bus_size_factor, facecolor="gray" ) labels = ["{} bEUR/a".format(s) for s in (5, 1)] l2 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(0.01, 1.01), labelspacing=1.0, frameon=False, title='System cost', handler_map=make_handler_map_to_scale_circles_as_in(ax) ) ax.add_artist(l2) handles = [] labels = [] for s in (10, 5): handles.append(plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor)) labels.append("{} GW".format(s)) l1_1 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(0.22, 1.01), frameon=False, labelspacing=0.8, handletextpad=1.5, title=title ) ax.add_artist(l1_1) fig.savefig( snakemake.output.map, transparent=True, bbox_inches="tight" ) def group_pipes(df, drop_direction=False): """Group pipes which connect same buses and return overall capacity. """ if drop_direction: positive_order = df.bus0 < df.bus1 df_p = df[positive_order] swap_buses = {"bus0": "bus1", "bus1": "bus0"} df_n = df[~positive_order].rename(columns=swap_buses) df = pd.concat([df_p, df_n]) # there are pipes for each investment period rename to AC buses name for plotting df.index = df.apply( lambda x: f"H2 pipeline {x.bus0.replace(' H2', '')} -> {x.bus1.replace(' H2', '')}", axis=1 ) # group pipe lines connecting the same buses and rename them for plotting pipe_capacity = df["p_nom_opt"].groupby(level=0).sum() return pipe_capacity def plot_h2_map(network): n = network.copy() if "H2 pipeline" not in n.links.carrier.unique(): return assign_location(n) bus_size_factor = 1e5 linewidth_factor = 1e4 # MW below which not drawn line_lower_threshold = 1e2 # Drop non-electric buses so they don't clutter the plot n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) elec = n.links[n.links.carrier.isin(["H2 Electrolysis", "H2 Fuel Cell"])].index bus_sizes = n.links.loc[elec,"p_nom_opt"].groupby([n.links["bus0"], n.links.carrier]).sum() / bus_size_factor # make a fake MultiIndex so that area is correct for legend bus_sizes.rename(index=lambda x: x.replace(" H2", ""), level=0, inplace=True) # drop all links which are not H2 pipelines n.links.drop(n.links.index[~n.links.carrier.str.contains("H2 pipeline")], inplace=True) h2_new = n.links.loc[n.links.carrier=="H2 pipeline"] h2_retro = n.links.loc[n.links.carrier=='H2 pipeline retrofitted'] # sum capacitiy for pipelines from different investment periods h2_new = group_pipes(h2_new) h2_retro = group_pipes(h2_retro, drop_direction=True).reindex(h2_new.index).fillna(0) n.links.rename(index=lambda x: x.split("-2")[0], inplace=True) n.links = n.links.groupby(level=0).first() link_widths_total = (h2_new + h2_retro) / linewidth_factor link_widths_total = link_widths_total.reindex(n.links.index).fillna(0.) link_widths_total[n.links.p_nom_opt < line_lower_threshold] = 0. retro = n.links.p_nom_opt.where(n.links.carrier=='H2 pipeline retrofitted', other=0.) link_widths_retro = retro / linewidth_factor link_widths_retro[n.links.p_nom_opt < line_lower_threshold] = 0. n.links.bus0 = n.links.bus0.str.replace(" H2", "") n.links.bus1 = n.links.bus1.str.replace(" H2", "") fig, ax = plt.subplots( figsize=(7, 6), subplot_kw={"projection": ccrs.PlateCarree()} ) n.plot( bus_sizes=bus_sizes, bus_colors=snakemake.config['plotting']['tech_colors'], link_colors='#a2f0f2', link_widths=link_widths_total, branch_components=["Link"], ax=ax, **map_opts ) n.plot( geomap=False, bus_sizes=0, link_colors='#72d3d6', link_widths=link_widths_retro, branch_components=["Link"], ax=ax, **map_opts ) handles = make_legend_circles_for( [50000, 10000], scale=bus_size_factor, facecolor='grey' ) labels = ["{} GW".format(s) for s in (50, 10)] l2 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(-0.03, 1.01), labelspacing=1.0, frameon=False, title='Electrolyzer capacity', handler_map=make_handler_map_to_scale_circles_as_in(ax) ) ax.add_artist(l2) handles = [] labels = [] for s in (50, 10): handles.append(plt.Line2D([0], [0], color="grey", linewidth=s * 1e3 / linewidth_factor)) labels.append("{} GW".format(s)) l1_1 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(0.28, 1.01), frameon=False, labelspacing=0.8, handletextpad=1.5, title='H2 pipeline capacity' ) ax.add_artist(l1_1) fig.savefig( snakemake.output.map.replace("-costs-all","-h2_network"), bbox_inches="tight" ) def plot_ch4_map(network): n = network.copy() if "gas pipeline" not in n.links.carrier.unique(): return assign_location(n) bus_size_factor = 8e7 linewidth_factor = 1e4 # MW below which not drawn line_lower_threshold = 500 # Drop non-electric buses so they don't clutter the plot n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) fossil_gas_i = n.generators[n.generators.carrier=="gas"].index fossil_gas = n.generators_t.p.loc[:,fossil_gas_i].mul(n.snapshot_weightings.generators, axis=0).sum().groupby(n.generators.loc[fossil_gas_i,"bus"]).sum() / bus_size_factor fossil_gas.rename(index=lambda x: x.replace(" gas", ""), inplace=True) fossil_gas = fossil_gas.reindex(n.buses.index).fillna(0) # make a fake MultiIndex so that area is correct for legend fossil_gas.index = pd.MultiIndex.from_product([fossil_gas.index, ["fossil gas"]]) methanation_i = n.links[n.links.carrier.isin(["helmeth", "Sabatier"])].index methanation = abs(n.links_t.p1.loc[:,methanation_i].mul(n.snapshot_weightings.generators, axis=0)).sum().groupby(n.links.loc[methanation_i,"bus1"]).sum() / bus_size_factor methanation = methanation.groupby(methanation.index).sum().rename(index=lambda x: x.replace(" gas", "")) # make a fake MultiIndex so that area is correct for legend methanation.index = pd.MultiIndex.from_product([methanation.index, ["methanation"]]) biogas_i = n.stores[n.stores.carrier=="biogas"].index biogas = n.stores_t.p.loc[:,biogas_i].mul(n.snapshot_weightings.generators, axis=0).sum().groupby(n.stores.loc[biogas_i,"bus"]).sum() / bus_size_factor biogas = biogas.groupby(biogas.index).sum().rename(index=lambda x: x.replace(" biogas", "")) # make a fake MultiIndex so that area is correct for legend biogas.index = pd.MultiIndex.from_product([biogas.index, ["biogas"]]) bus_sizes = pd.concat([fossil_gas, methanation, biogas]) bus_sizes.sort_index(inplace=True) to_remove = n.links.index[~n.links.carrier.str.contains("gas pipeline")] n.links.drop(to_remove, inplace=True) link_widths_rem = n.links.p_nom_opt / linewidth_factor link_widths_rem[n.links.p_nom_opt < line_lower_threshold] = 0. link_widths_orig = n.links.p_nom / linewidth_factor link_widths_orig[n.links.p_nom < line_lower_threshold] = 0. max_usage = n.links_t.p0.abs().max(axis=0) link_widths_used = max_usage / linewidth_factor link_widths_used[max_usage < line_lower_threshold] = 0. link_color_used = n.links.carrier.map({"gas pipeline": "#f08080", "gas pipeline new": "#c46868"}) n.links.bus0 = n.links.bus0.str.replace(" gas", "") n.links.bus1 = n.links.bus1.str.replace(" gas", "") tech_colors = snakemake.config['plotting']['tech_colors'] bus_colors = { "fossil gas": tech_colors["fossil gas"], "methanation": tech_colors["methanation"], "biogas": "seagreen" } fig, ax = plt.subplots(figsize=(7,6), subplot_kw={"projection": ccrs.PlateCarree()}) n.plot( bus_sizes=bus_sizes, bus_colors=bus_colors, link_colors='lightgrey', link_widths=link_widths_orig, branch_components=["Link"], ax=ax, **map_opts ) n.plot( geomap=False, ax=ax, bus_sizes=0., link_colors='#e8d1d1', link_widths=link_widths_rem, branch_components=["Link"], **map_opts ) n.plot( geomap=False, ax=ax, bus_sizes=0., link_colors=link_color_used, link_widths=link_widths_used, branch_components=["Link"], **map_opts ) handles = make_legend_circles_for( [10e6, 100e6], scale=bus_size_factor, facecolor='grey' ) labels = ["{} TWh".format(s) for s in (10, 100)] l2 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(-0.03, 1.01), labelspacing=1.0, frameon=False, title='gas generation', handler_map=make_handler_map_to_scale_circles_as_in(ax) ) ax.add_artist(l2) handles = [] labels = [] for s in (50, 10): handles.append(plt.Line2D([0], [0], color="grey", linewidth=s * 1e3 / linewidth_factor)) labels.append("{} GW".format(s)) l1_1 = ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(0.28, 1.01), frameon=False, labelspacing=0.8, handletextpad=1.5, title='gas pipeline used capacity' ) ax.add_artist(l1_1) fig.savefig( snakemake.output.map.replace("-costs-all","-ch4_network"), bbox_inches="tight" ) def plot_map_without(network): n = network.copy() assign_location(n) # Drop non-electric buses so they don't clutter the plot n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) fig, ax = plt.subplots( figsize=(7, 6), subplot_kw={"projection": ccrs.PlateCarree()} ) # PDF has minimum width, so set these to zero line_lower_threshold = 200. line_upper_threshold = 1e4 linewidth_factor = 2e3 ac_color = "gray" dc_color = "m" # hack because impossible to drop buses... if "EU gas" in n.buses.index: eu_location = snakemake.config["plotting"].get("eu_node_location", dict(x=-5.5, y=46)) n.buses.loc["EU gas", "x"] = eu_location["x"] n.buses.loc["EU gas", "y"] = eu_location["y"] to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")] n.links.drop(to_drop, inplace=True) if snakemake.wildcards["lv"] == "1.0": line_widths = n.lines.s_nom link_widths = n.links.p_nom else: line_widths = n.lines.s_nom_min link_widths = n.links.p_nom_min line_widths[line_widths < line_lower_threshold] = 0. link_widths[link_widths < line_lower_threshold] = 0. line_widths[line_widths > line_upper_threshold] = line_upper_threshold link_widths[link_widths > line_upper_threshold] = line_upper_threshold n.plot( bus_colors="k", line_colors=ac_color, link_colors=dc_color, line_widths=line_widths / linewidth_factor, link_widths=link_widths / linewidth_factor, ax=ax, **map_opts ) handles = [] labels = [] for s in (10, 5): handles.append(plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor)) labels.append("{} GW".format(s)) l1_1 = ax.legend(handles, labels, loc="upper left", bbox_to_anchor=(0.05, 1.01), frameon=False, labelspacing=0.8, handletextpad=1.5, title='Today\'s transmission') ax.add_artist(l1_1) fig.savefig( snakemake.output.today, transparent=True, bbox_inches="tight" ) def plot_series(network, carrier="AC", name="test"): n = network.copy() assign_location(n) assign_carriers(n) buses = n.buses.index[n.buses.carrier.str.contains(carrier)] supply = pd.DataFrame(index=n.snapshots) for c in n.iterate_components(n.branch_components): n_port = 4 if c.name=='Link' else 2 for i in range(n_port): supply = pd.concat((supply, (-1) * c.pnl["p" + str(i)].loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]].groupby(c.df.carrier, axis=1).sum()), axis=1) for c in n.iterate_components(n.one_port_components): comps = c.df.index[c.df.bus.isin(buses)] supply = pd.concat((supply, ((c.pnl["p"].loc[:, comps]).multiply( c.df.loc[comps, "sign"])).groupby(c.df.carrier, axis=1).sum()), axis=1) supply = supply.groupby(rename_techs_tyndp, axis=1).sum() both = supply.columns[(supply < 0.).any() & (supply > 0.).any()] positive_supply = supply[both] negative_supply = supply[both] positive_supply[positive_supply < 0.] = 0. negative_supply[negative_supply > 0.] = 0. supply[both] = positive_supply suffix = " charging" negative_supply.columns = negative_supply.columns + suffix supply = pd.concat((supply, negative_supply), axis=1) # 14-21.2 for flaute # 19-26.1 for flaute start = "2013-02-19" stop = "2013-02-26" threshold = 10e3 to_drop = supply.columns[(abs(supply) < threshold).all()] if len(to_drop) != 0: print("dropping", to_drop) supply.drop(columns=to_drop, inplace=True) supply.index.name = None supply = supply / 1e3 supply.rename(columns={"electricity": "electric demand", "heat": "heat demand"}, inplace=True) supply.columns = supply.columns.str.replace("residential ", "") supply.columns = supply.columns.str.replace("services ", "") supply.columns = supply.columns.str.replace("urban decentral ", "decentral ") preferred_order = pd.Index(["electric demand", "transmission lines", "hydroelectricity", "hydro reservoir", "run of river", "pumped hydro storage", "CHP", "onshore wind", "offshore wind", "solar PV", "solar thermal", "building retrofitting", "ground heat pump", "air heat pump", "resistive heater", "OCGT", "gas boiler", "gas", "natural gas", "methanation", "hydrogen storage", "battery storage", "hot water storage"]) new_columns = (preferred_order.intersection(supply.columns) .append(supply.columns.difference(preferred_order))) supply = supply.groupby(supply.columns, axis=1).sum() fig, ax = plt.subplots() fig.set_size_inches((8, 5)) (supply.loc[start:stop, new_columns] .plot(ax=ax, kind="area", stacked=True, linewidth=0., color=[snakemake.config['plotting']['tech_colors'][i.replace(suffix, "")] for i in new_columns])) handles, labels = ax.get_legend_handles_labels() handles.reverse() labels.reverse() new_handles = [] new_labels = [] for i, item in enumerate(labels): if "charging" not in item: new_handles.append(handles[i]) new_labels.append(labels[i]) ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False) ax.set_xlim([start, stop]) ax.set_ylim([-1300, 1900]) ax.grid(True) ax.set_ylabel("Power [GW]") fig.tight_layout() fig.savefig("{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format( snakemake.config['results_dir'], snakemake.config['run'], snakemake.wildcards["lv"], carrier, start, stop, name), transparent=True) if __name__ == "__main__": if 'snakemake' not in globals(): from helper import mock_snakemake snakemake = mock_snakemake( 'plot_network', simpl='', clusters="45", lv=1.0, opts='', sector_opts='168H-T-H-B-I-A-solar+p3-dist1', planning_horizons="2050", ) overrides = override_component_attrs(snakemake.input.overrides) n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) map_opts = snakemake.config['plotting']['map'] plot_map(n, components=["generators", "links", "stores", "storage_units"], bus_size_factor=1.5e10, transmission=False ) plot_h2_map(n) plot_ch4_map(n) plot_map_without(n) #plot_series(n, carrier="AC", name=suffix) #plot_series(n, carrier="heat", name=suffix)