# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Build heat demand time series using heating degree day (HDD) approximation. """ import atlite import geopandas as gpd import numpy as np import pandas as pd import xarray as xr from _helpers import set_scenario_config from dask.distributed import Client, LocalCluster if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "build_daily_heat_demands", scope="total", simpl="", clusters=48, ) set_scenario_config(snakemake) nprocesses = int(snakemake.threads) cluster = LocalCluster(n_workers=nprocesses, threads_per_worker=1) client = Client(cluster, asynchronous=True) cutout_name = snakemake.input.cutout year = snakemake.wildcards.weather_year if year: snapshots = dict(start=year, end=str(int(year) + 1), inclusive="left") cutout_name = cutout_name.format(weather_year=year) else: snapshots = snakemake.params.snapshots time = pd.date_range(freq="h", **snapshots) daily = pd.date_range(freq="D", **snapshots) if snakemake.params.drop_leap_day: time = time[~((time.month == 2) & (time.day == 29))] daily = daily[~((daily.month == 2) & (daily.day == 29))] cutout = atlite.Cutout(cutout_name).sel(time=time) clustered_regions = ( gpd.read_file(snakemake.input.regions_onshore).set_index("name").buffer(0) ) I = cutout.indicatormatrix(clustered_regions) # noqa: E741 pop_layout = xr.open_dataarray(snakemake.input.pop_layout) stacked_pop = pop_layout.stack(spatial=("y", "x")) M = I.T.dot(np.diag(I.dot(stacked_pop))) heat_demand = cutout.heat_demand( matrix=M.T, index=clustered_regions.index, dask_kwargs=dict(scheduler=client), show_progress=False, ).sel(time=daily) heat_demand.to_netcdf(snakemake.output.heat_demand)