# coding: utf-8 """ Retrieves conventional powerplant capacities and locations from `powerplantmatching `_, assigns these to buses and creates a ``.csv`` file. Relevant Settings ----------------- .. code:: yaml enable: powerplantmatching: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`toplevel_cf` Inputs ------ - ``networks/base.nc``: confer :ref:`base`. Outputs ------- - ``resource/powerplants.csv``: A list of conventional power plants (i.e. neither wind nor solar) with fields for name, fuel type, technology, country, capacity in MW, duration, commissioning year, retrofit year, latitude, longitude, and dam information as documented in the `powerplantmatching README `_; additionally it includes information on the closest substation/bus in ``networks/base.nc``. .. image:: ../img/powerplantmatching.png :scale: 30 % **Source:** `powerplantmatching on GitHub `_ Description ----------- """ import logging import numpy as np import pandas as pd from scipy.spatial import cKDTree as KDTree import pycountry as pyc import pypsa import powerplantmatching as ppm def country_alpha_2(name): try: cntry = pyc.countries.get(name=name) except KeyError: cntry = None if cntry is None: cntry = pyc.countries.get(official_name=name) return cntry.alpha_2 if __name__ == "__main__": if 'snakemake' not in globals(): from vresutils.snakemake import MockSnakemake, Dict snakemake = MockSnakemake( input=Dict(base_network='networks/base.nc'), output=['resources/powerplants.csv'] ) logging.basicConfig(level=snakemake.config['logging_level']) n = pypsa.Network(snakemake.input.base_network) ppm.powerplants(from_url=True) ppl = (ppm.collection.matched_data() [lambda df : ~df.Fueltype.isin(('Solar', 'Wind'))] .pipe(ppm.cleaning.clean_technology) .assign(Fueltype=lambda df: ( df.Fueltype.where(df.Fueltype != 'Natural Gas', df.Technology.replace('Steam Turbine', 'OCGT').fillna('OCGT')))) .pipe(ppm.utils.fill_geoposition)) # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('CCGT'), 'Fueltype'] = 'CCGT' # ppl.loc[(ppl.Fueltype == 'Other') & ppl.Technology.str.contains('Steam Turbine'), 'Fueltype'] = 'CCGT' ppl = ppl.loc[ppl.lon.notnull() & ppl.lat.notnull()] ppl = ppl.replace({"Country": {"Macedonia, Republic of": "North Macedonia"}}) ppl_country = ppl.Country.map(country_alpha_2) countries = n.buses.country.unique() cntries_without_ppl = [] for cntry in countries: substation_lv_i = n.buses.index[n.buses['substation_lv'] & (n.buses.country == cntry)] ppl_b = ppl_country == cntry if not ppl_b.any(): cntries_without_ppl.append(cntry) continue kdtree = KDTree(n.buses.loc[substation_lv_i, ['x','y']].values) ppl.loc[ppl_b, 'bus'] = substation_lv_i[kdtree.query(ppl.loc[ppl_b, ['lon','lat']].values)[1]] if cntries_without_ppl: logging.warning("No powerplants known in: {}".format(", ".join(cntries_without_ppl))) bus_null_b = ppl["bus"].isnull() if bus_null_b.any(): logging.warning("Couldn't find close bus for {} powerplants".format(bus_null_b.sum())) ppl.to_csv(snakemake.output[0])