import geopandas as gpd import atlite import pandas as pd import xarray as xr import scipy as sp if 'snakemake' not in globals(): from vresutils import Dict import yaml snakemake = Dict() with open('config.yaml') as f: snakemake.config = yaml.load(f) snakemake.input = Dict() snakemake.output = Dict() time = pd.date_range(freq='m', **snakemake.config['snapshots']) params = dict(years=slice(*time.year[[0, -1]]), months=slice(*time.month[[0, -1]])) cutout = atlite.Cutout(snakemake.config['renewable']['onwind']['cutout'], cutout_dir=snakemake.config['atlite']['cutout_dir'], **params) clustered_busregions_as_geopd = gpd.read_file(snakemake.input.regions_onshore).set_index('name', drop=True) clustered_busregions = pd.Series(clustered_busregions_as_geopd.geometry, index=clustered_busregions_as_geopd.index) I = cutout.indicatormatrix(clustered_busregions) for item in ["rural","urban","total"]: pop_layout = xr.open_dataarray(snakemake.input['pop_layout_'+item]) M = I.T.dot(sp.diag(I.dot(pop_layout.stack(spatial=('y', 'x'))))) heat_demand = cutout.heat_demand(matrix=M.T,index=clustered_busregions.index) heat_demand.to_netcdf(snakemake.output["heat_demand_"+item])