# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ Solves linear optimal dispatch in hourly resolution using the capacities of previous capacity expansion in rule :mod:`solve_network`. """ import logging import numpy as np import pypsa from _helpers import ( configure_logging, set_scenario_config, update_config_from_wildcards, ) from solve_network import prepare_network, solve_network logger = logging.getLogger(__name__) if __name__ == "__main__": if "snakemake" not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake( "solve_operations_network", configfiles="test/config.electricity.yaml", opts="", clusters="5", ll="v1.5", sector_opts="", planning_horizons="", ) configure_logging(snakemake) set_scenario_config(snakemake) update_config_from_wildcards(snakemake.config, snakemake.wildcards) solve_opts = snakemake.params.options np.random.seed(solve_opts.get("seed", 123)) n = pypsa.Network(snakemake.input.network) n.optimize.fix_optimal_capacities() n = prepare_network(n, solve_opts, config=snakemake.config) n = solve_network( n, config=snakemake.config, params=snakemake.params, solving=snakemake.params.solving, log_fn=snakemake.log.solver, ) n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) n.export_to_netcdf(snakemake.output[0])