diff --git a/doc/configtables/licenses-sector.csv b/doc/configtables/licenses-sector.csv index a297b2f6..7f20b5a6 100644 --- a/doc/configtables/licenses-sector.csv +++ b/doc/configtables/licenses-sector.csv @@ -10,7 +10,7 @@ BASt emobility statistics,emobility/,unknown,http://www.bast.de/DE/Verkehrstechn BDEW heating profile,heat_load_profile_BDEW.csv,unknown,https://github.com/oemof/demandlib heating profiles for Aarhus,heat_load_profile_DK_AdamJensen.csv,unknown,Adam Jensen MA thesis at Aarhus University co2 budgets,co2_budget.csv,CC BY 4.0,https://arxiv.org/abs/2004.11009 -existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1 +existing heating potentials,existing_infrastructure/existing_heating_raw.csv,unknown,https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en IRENA existing VRE capacities,existing_infrastructure/{solar|onwind|offwind}_capcity_IRENA.csv,unknown,https://www.irena.org/Statistics/Download-Data USGS ammonia production,myb1-2017-nitro.xls,unknown,https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information hydrogen salt cavern potentials,h2_salt_caverns_GWh_per_sqkm.geojson,CC BY 4.0,https://doi.org/10.1016/j.ijhydene.2019.12.161 https://doi.org/10.20944/preprints201910.0187.v1 diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index 4f476b4d..3934079e 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -402,16 +402,10 @@ def add_heating_capacities_installed_before_baseyear( """ logger.debug(f"Adding heating capacities installed before {baseyear}") - # Add existing heating capacities, data comes from the study - # "Mapping and analyses of the current and future (2020 - 2030) - # heating/cooling fuel deployment (fossil/renewables) " - # https://ec.europa.eu/energy/studies/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment_en?redir=1 - # file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv". - # TODO start from original file + existing_heating = pd.read_csv(snakemake.input.existing_heating_distribution, + header=[0,1], + index_col=0) - existing_heating = pd.read_csv( - snakemake.input.existing_heating_distribution, header=[0, 1], index_col=0 - ) techs = existing_heating.columns.get_level_values(1).unique() diff --git a/scripts/build_existing_heating_distribution.py b/scripts/build_existing_heating_distribution.py index 67993c29..12bfd4da 100644 --- a/scripts/build_existing_heating_distribution.py +++ b/scripts/build_existing_heating_distribution.py @@ -16,9 +16,17 @@ cc = coco.CountryConverter() def build_existing_heating(): # retrieve existing heating capacities - existing_heating = pd.read_csv( - snakemake.input.existing_heating, index_col=0, header=0 - ) + # Add existing heating capacities, data comes from the study + # "Mapping and analyses of the current and future (2020 - 2030) + # heating/cooling fuel deployment (fossil/renewables) " + # https://energy.ec.europa.eu/publications/mapping-and-analyses-current-and-future-2020-2030-heatingcooling-fuel-deployment-fossilrenewables-1_en + # file: "WP2_DataAnnex_1_BuildingTechs_ForPublication_201603.xls" -> "existing_heating_raw.csv". + # data is for buildings only (i.e. NOT district heating) and represents the year 2012 + # TODO start from original file + + existing_heating = pd.read_csv(snakemake.input.existing_heating, + index_col=0, + header=0) # data for Albania, Montenegro and Macedonia not included in database existing_heating.loc["Albania"] = np.nan @@ -67,17 +75,14 @@ def build_existing_heating(): nodal_sectoral_totals.sum(axis=1), axis=0 ) - nodal_heat_name_fraction = pd.DataFrame(dtype=float) + nodal_heat_name_fraction = pd.DataFrame(index=district_heat_info.index, + dtype=float) - nodal_heat_name_fraction["urban central"] = dist_fraction + nodal_heat_name_fraction["urban central"] = 0. for sector in sectors: - nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[ - sector - ] * (1 - urban_fraction) - nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[ - sector - ] * (urban_fraction - dist_fraction) + nodal_heat_name_fraction[f"{sector} rural"] = nodal_sectoral_fraction[sector]*(1 - urban_fraction) + nodal_heat_name_fraction[f"{sector} urban decentral"] = nodal_sectoral_fraction[sector]*urban_fraction nodal_heat_name_tech = pd.concat( {