diff --git a/test/config.myopic.yaml b/test/config.myopic.yaml index 38d4328a..40daced7 100644 --- a/test/config.myopic.yaml +++ b/test/config.myopic.yaml @@ -1,148 +1,28 @@ -run: test-myopic # use this to keep track of runs with different settings -foresight: myopic # options are overnight, myopic, perfect (perfect is not yet implemented) +run: test-myopic +foresight: myopic scenario: - lv: # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt" + lv: - 1.5 - clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred + clusters: - 5 - sector_opts: # this is where the main scenario settings are + sector_opts: - 191H-T-H-B-I-A-solar+p3-dist1 - planning_horizons: # investment years for myopic and perfect; or costs year for overnight + planning_horizons: - 2030 - 2040 - 2050 snapshots: - # arguments to pd.date_range start: "2013-03-01" end: "2013-04-01" - inclusive: left # end is not inclusive atlite: cutout: ../pypsa-eur/cutouts/be-03-2013-era5.nc -existing_capacities: - grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] - -sector: - co2_vent: true - SMR: true - regional_co2_sequestration_potential: - enable: false - co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe - co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2 - co2_network: false - cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture - hydrogen_underground_storage: true - hydrogen_underground_storage_locations: - # - onshore # more than 50 km from sea - - nearshore # within 50 km of sea - # - offshore - use_fischer_tropsch_waste_heat: true - use_fuel_cell_waste_heat: true - electricity_distribution_grid: true - electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv - electricity_grid_connection: true # only applies to onshore wind and utility PV - H2_network: true - gas_network: false - H2_retrofit: false # if set to True existing gas pipes can be retrofitted to H2 pipes - # according to hydrogen backbone strategy (April, 2020) p.15 - # https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf - # 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity - H2_retrofit_capacity_per_CH4: 0.6 # ratio for H2 capacity per original CH4 capacity of retrofitted pipelines - gas_network_connectivity_upgrade: 1 # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation - gas_distribution_grid: true - gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv - biomass_transport: false # biomass transport between nodes - conventional_generation: # generator : carrier - OCGT: gas - biomass_boiler: false - biomass_to_liquid: false - biosng: false - - -industry: - St_primary_fraction: # 0.3 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6 - 2020: 0.6 - 2025: 0.55 - 2030: 0.5 - 2035: 0.45 - 2040: 0.4 - 2045: 0.35 - 2050: 0.3 - DRI_fraction: # 1 # fraction of the primary route converted to DRI + EAF - 2020: 0 - 2025: 0 - 2030: 0.05 - 2035: 0.2 - 2040: 0.4 - 2045: 0.7 - 2050: 1 - H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279 - elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf - Al_primary_fraction: # 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4 - 2020: 0.4 - 2025: 0.375 - 2030: 0.35 - 2035: 0.325 - 2040: 0.3 - 2045: 0.25 - 2050: 0.2 - MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf - MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3 - MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy) - MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB) - NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28 - petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28 - HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route - HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling - HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling - HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX - MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756. - MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking - chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43 - MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43 - MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process - methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62 - MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65 - MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65 - hotmaps_locate_missing: false - reference_year: 2015 - # references: - # DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf - # Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050 - -costs: - year: 2030 - version: v0.5.0 - lifetime: 25 #default lifetime - # From a Lion Hirth paper, also reflects average of Noothout et al 2016 - discountrate: 0.07 - # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 - USD2013_to_EUR2013: 0.7532 - - # Marginal and capital costs can be overwritten - # capital_cost: - # onwind: 500 - marginal_cost: - solar: 0.01 - onwind: 0.015 - offwind: 0.015 - hydro: 0. - H2: 0. - battery: 0. - - emission_prices: # only used with the option Ep (emission prices) - co2: 0. - - lines: - length_factor: 1.25 #to estimate offwind connection costs - - solving: solver: name: cbc options: cbc-default - mem: 4000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2 + mem: 4000 diff --git a/test/config.overnight.yaml b/test/config.overnight.yaml index c0e6f57b..7214906b 100644 --- a/test/config.overnight.yaml +++ b/test/config.overnight.yaml @@ -1,53 +1,29 @@ -run: test-overnight # use this to keep track of runs with different settings -foresight: overnight # options are overnight, myopic, perfect (perfect is not yet implemented) +run: test-overnight +foresight: overnight scenario: - lv: # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt" + lv: - 1.5 - clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred + clusters: - 5 - sector_opts: # this is where the main scenario settings are + sector_opts: - CO2L0-191H-T-H-B-I-A-solar+p3-dist1 - planning_horizons: # investment years for myopic and perfect; or costs year for overnight + planning_horizons: - 2030 - # for example, set to [2020, 2030, 2040, 2050] for myopic foresight snapshots: - # arguments to pd.date_range start: "2013-03-01" end: "2013-04-01" - inclusive: left # end is not inclusive atlite: cutout: ../pypsa-eur/cutouts/be-03-2013-era5.nc sector: - co2_vent: true - SMR: true - regional_co2_sequestration_potential: - enable: false - co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe - co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2 - co2_network: false - cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture - hydrogen_underground_storage: true - hydrogen_underground_storage_locations: - # - onshore # more than 50 km from sea - - nearshore # within 50 km of sea - # - offshore - use_fischer_tropsch_waste_heat: true - use_fuel_cell_waste_heat: true - electricity_distribution_grid: true - electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv - electricity_grid_connection: true # only applies to onshore wind and utility PV - H2_network: true gas_network: true - H2_retrofit: true # if set to True existing gas pipes can be retrofitted to H2 pipes - biomass_boiler: false + H2_retrofit: true solving: solver: name: cbc options: cbc-default - mem: 4000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2 - + mem: 4000