From bb160d78b1e566789bd99c12596f581c2debea82 Mon Sep 17 00:00:00 2001 From: martacki Date: Thu, 21 Dec 2023 10:40:10 +0100 Subject: [PATCH] fix more deprecation warnings --- scripts/build_retro_cost.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) mode change 100644 => 100755 scripts/build_retro_cost.py diff --git a/scripts/build_retro_cost.py b/scripts/build_retro_cost.py old mode 100644 new mode 100755 index f5313c21..8a3edb54 --- a/scripts/build_retro_cost.py +++ b/scripts/build_retro_cost.py @@ -533,15 +533,15 @@ def prepare_temperature_data(): """ temperature = xr.open_dataarray(snakemake.input.air_temperature).to_pandas() d_heat = ( - temperature.groupby(temperature.columns.str[:2], axis=1) - .mean() + temperature.T.groupby(temperature.columns.str[:2]) + .mean().T .resample("1D") .mean() < t_threshold ).sum() temperature_average_d_heat = ( - temperature.groupby(temperature.columns.str[:2], axis=1) - .mean() + temperature.T.groupby(temperature.columns.str[:2]) + .mean().T .apply( lambda x: get_average_temperature_during_heating_season(x, t_threshold=15) ) @@ -610,7 +610,7 @@ def calculate_costs(u_values, l, cost_retro, window_assumptions): cost_retro.loc[x.name[3], "cost_var"] * 100 * float(l) - * l_weight.loc[x.name[3]][0] + * l_weight.loc[x.name[3]].iloc[0] + cost_retro.loc[x.name[3], "cost_fix"] ) * x.A_element @@ -720,6 +720,7 @@ def map_to_lstrength(l_strength, df): .swaplevel(axis=1) .dropna(axis=1) ) + return pd.concat([df.drop([2, 3], axis=1, level=1), l_strength_df], axis=1) @@ -800,6 +801,7 @@ def calculate_heat_losses(u_values, data_tabula, l_strength, temperature_factor) * data_tabula.A_envelope / data_tabula.A_C_Ref ) + heat_transfer_perm2 = pd.concat( [ heat_transfer_perm2, @@ -836,8 +838,8 @@ def calculate_heat_losses(u_values, data_tabula, l_strength, temperature_factor) F_red_temp = map_to_lstrength(l_strength, F_red_temp) Q_ht = ( - heat_transfer_perm2.groupby(level=1, axis=1) - .sum() + heat_transfer_perm2.T.groupby(level=1) + .sum().T .mul(F_red_temp.droplevel(0, axis=1)) .mul(temperature_factor.reindex(heat_transfer_perm2.index, level=0), axis=0) ) @@ -878,7 +880,7 @@ def calculate_gain_utilisation_factor(heat_transfer_perm2, Q_ht, Q_gain): Calculates gain utilisation factor nu. """ # time constant of the building tau [h] = c_m [Wh/(m^2K)] * 1 /(H_tr_e+H_tb*H_ve) [m^2 K /W] - tau = c_m / heat_transfer_perm2.groupby(level=1, axis=1).sum() + tau = c_m / heat_transfer_perm2.T.groupby(level=1).sum().T alpha = alpha_H_0 + (tau / tau_H_0) # heat balance ratio gamma = (1 / Q_ht).mul(Q_gain.sum(axis=1), axis=0)