diff --git a/configs/config.default.yaml b/configs/config.default.yaml new file mode 100644 index 00000000..5218bc22 --- /dev/null +++ b/configs/config.default.yaml @@ -0,0 +1,959 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +version: 0.8.0 +tutorial: false + +logging: + level: INFO + format: '%(levelname)s:%(name)s:%(message)s' + +run: + name: "" # use this to keep track of runs with different settings + disable_progressbar: false # set to true to disable the progressbar + shared_resources: false # set to true to share the default resources across runs + shared_cutouts: true # set to true to share the default cutout(s) across runs + +foresight: overnight # options are overnight, myopic, perfect (perfect is not yet implemented) +# if you use myopic or perfect foresight, set the investment years in "planning_horizons" below + +scenario: + simpl: + - '' + ll: # allowed transmission line volume expansion, can be any float >= 1.0 with a prefix v|c (today) or "copt" + - v1.0 + - v1.5 + clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred + - 37 + - 128 + - 256 + - 512 + - 1024 + opts: # only relevant for PyPSA-Eur + - '' + sector_opts: # this is where the main scenario settings are + - Co2L0-3H-T-H-B-I-A-solar+p3-dist1 + # to really understand the options here, look in scripts/prepare_sector_network.py + # Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%); + # Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions + # xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours + # single letters are sectors: T for land transport, H for building heating, + # B for biomass supply, I for industry, shipping and aviation, + # A for agriculture, forestry and fishing + # solar+c0.5 reduces the capital cost of solar to 50\% of reference value + # solar+p3 multiplies the available installable potential by factor 3 + # seq400 sets the potential of CO2 sequestration to 400 Mt CO2 per year + # dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv + # for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative + # emissions throughout the transition path in the timeframe determined by the + # planning_horizons), be:beta decay; ex:exponential decay + # cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential + # decay with initial growth rate 0 + planning_horizons: # investment years for myopic and perfect; for overnight, year of cost assumptions can be different and is defined under 'costs' + - 2050 + # for example, set to + # - 2020 + # - 2030 + # - 2040 + # - 2050 + # for myopic foresight + +countries: ['AL', 'AT', 'BA', 'BE', 'BG', 'CH', 'CZ', 'DE', 'DK', 'EE', 'ES', 'FI', 'FR', 'GB', 'GR', 'HR', 'HU', 'IE', 'IT', 'LT', 'LU', 'LV', 'ME', 'MK', 'NL', 'NO', 'PL', 'PT', 'RO', 'RS', 'SE', 'SI', 'SK'] + +snapshots: + start: "2013-01-01" + end: "2014-01-01" + inclusive: 'left' # include start, not end + +enable: + prepare_links_p_nom: false + retrieve_databundle: true + retrieve_sector_databundle: true + retrieve_cost_data: true + build_cutout: false + retrieve_cutout: true + build_natura_raster: false + retrieve_natura_raster: true + custom_busmap: false + +# CO2 budget as a fraction of 1990 emissions +# this is over-ridden if CO2Lx is set in sector_opts +# this is also over-ridden if cb is set in sector_opts +co2_budget: + 2020: 0.701 + 2025: 0.524 + 2030: 0.297 + 2035: 0.150 + 2040: 0.071 + 2045: 0.032 + 2050: 0.000 + +electricity: + voltages: [220., 300., 380.] + gaslimit: false # global gas usage limit of X MWh_th + co2limit: 7.75e+7 # 0.05 * 3.1e9*0.5 + co2base: 1.487e+9 + agg_p_nom_limits: data/agg_p_nom_minmax.csv + + operational_reserve: # like https://genxproject.github.io/GenX/dev/core/#Reserves + activate: false + epsilon_load: 0.02 # share of total load + epsilon_vres: 0.02 # share of total renewable supply + contingency: 4000 # fixed capacity in MW + + max_hours: + battery: 6 + H2: 168 + + extendable_carriers: + Generator: [solar, onwind, offwind-ac, offwind-dc, OCGT] + StorageUnit: [] # battery, H2 + Store: [battery, H2] + Link: [] # H2 pipeline + + # use pandas query strings here, e.g. Country not in ['Germany'] + powerplants_filter: (DateOut >= 2022 or DateOut != DateOut) + # use pandas query strings here, e.g. Country in ['Germany'] + custom_powerplants: false + + conventional_carriers: [nuclear, oil, OCGT, CCGT, coal, lignite, geothermal, biomass] + renewable_carriers: [solar, onwind, offwind-ac, offwind-dc, hydro] + + estimate_renewable_capacities: + enable: true + # Add capacities from OPSD data + from_opsd: true + # Renewable capacities are based on existing capacities reported by IRENA + year: 2020 + # Artificially limit maximum capacities to factor * (IRENA capacities), + # i.e. 110% of 's capacities => expansion_limit: 1.1 + # false: Use estimated renewable potentials determine by the workflow + expansion_limit: false + technology_mapping: + # Wind is the Fueltype in powerplantmatching, onwind, offwind-{ac,dc} the carrier in PyPSA-Eur + Offshore: [offwind-ac, offwind-dc] + Onshore: [onwind] + PV: [solar] + + +atlite: + default_cutout: europe-2013-era5 + nprocesses: 4 + show_progress: false # false saves time + cutouts: + # use 'base' to determine geographical bounds and time span from config + # base: + # module: era5 + europe-2013-era5: + module: era5 # in priority order + x: [-12., 35.] + y: [33., 72] + dx: 0.3 + dy: 0.3 + time: ['2013', '2013'] + europe-2013-sarah: + module: [sarah, era5] # in priority order + x: [-12., 45.] + y: [33., 65] + dx: 0.2 + dy: 0.2 + time: ['2013', '2013'] + sarah_interpolate: false + sarah_dir: + features: [influx, temperature] + + +renewable: + onwind: + cutout: europe-2013-era5 + resource: + method: wind + turbine: Vestas_V112_3MW + capacity_per_sqkm: 3 # ScholzPhd Tab 4.3.1: 10MW/km^2 and assuming 30% fraction of the already restricted + # area is available for installation of wind generators due to competing land use and likely public + # acceptance issues. + # correction_factor: 0.93 + corine: + # Scholz, Y. (2012). Renewable energy based electricity supply at low costs + # development of the REMix model and application for Europe. ( p.42 / p.28) + grid_codes: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32] + distance: 1000 + distance_grid_codes: [1, 2, 3, 4, 5, 6] + natura: true + excluder_resolution: 100 + potential: simple # or conservative + clip_p_max_pu: 1.e-2 + offwind-ac: + cutout: europe-2013-era5 + resource: + method: wind + turbine: NREL_ReferenceTurbine_5MW_offshore + capacity_per_sqkm: 2 # ScholzPhd Tab 4.3.1: 10MW/km^2 and assuming 20% fraction of the already restricted + # area is available for installation of wind generators due to competing land use and likely public + # acceptance issues. + correction_factor: 0.8855 + # proxy for wake losses + # from 10.1016/j.energy.2018.08.153 + # until done more rigorously in #153 + corine: [44, 255] + natura: true + ship_threshold: 400 + max_depth: 50 + max_shore_distance: 30000 + excluder_resolution: 200 + potential: simple # or conservative + clip_p_max_pu: 1.e-2 + offwind-dc: + cutout: europe-2013-era5 + resource: + method: wind + turbine: NREL_ReferenceTurbine_5MW_offshore + capacity_per_sqkm: 2 # ScholzPhd Tab 4.3.1: 10MW/km^2 and assuming 20% fraction of the already restricted + # area is available for installation of wind generators due to competing land use and likely public + # acceptance issues. + correction_factor: 0.8855 + # proxy for wake losses + # from 10.1016/j.energy.2018.08.153 + # until done more rigorously in #153 + corine: [44, 255] + natura: true + ship_threshold: 400 + max_depth: 50 + min_shore_distance: 30000 + excluder_resolution: 200 + potential: simple # or conservative + clip_p_max_pu: 1.e-2 + solar: + cutout: europe-2013-sarah + resource: + method: pv + panel: CSi + orientation: + slope: 35. + azimuth: 180. + capacity_per_sqkm: 1.7 # ScholzPhd Tab 4.3.1: 170 MW/km^2 and assuming 1% of the area can be used for solar PV panels + # Correction factor determined by comparing uncorrected area-weighted full-load hours to those + # published in Supplementary Data to + # Pietzcker, Robert Carl, et al. "Using the sun to decarbonize the power + # sector -- The economic potential of photovoltaics and concentrating solar + # power." Applied Energy 135 (2014): 704-720. + # This correction factor of 0.854337 may be in order if using reanalysis data. + # for discussion refer to https://github.com/PyPSA/pypsa-eur/pull/304 + # correction_factor: 0.854337 + corine: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 26, 31, 32] + natura: true + excluder_resolution: 100 + potential: simple # or conservative + clip_p_max_pu: 1.e-2 + hydro: + cutout: europe-2013-era5 + carriers: [ror, PHS, hydro] + PHS_max_hours: 6 + hydro_max_hours: "energy_capacity_totals_by_country" # one of energy_capacity_totals_by_country, estimate_by_large_installations or a float + clip_min_inflow: 1.0 + +conventional: + nuclear: + p_max_pu: "data/nuclear_p_max_pu.csv" # float of file name + +lines: + types: + 220.: "Al/St 240/40 2-bundle 220.0" + 300.: "Al/St 240/40 3-bundle 300.0" + 380.: "Al/St 240/40 4-bundle 380.0" + s_max_pu: 0.7 + s_nom_max: .inf + length_factor: 1.25 + under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity + +links: + p_max_pu: 1.0 + p_nom_max: .inf + include_tyndp: true + under_construction: 'zero' # 'zero': set capacity to zero, 'remove': remove, 'keep': with full capacity + +transformers: + x: 0.1 + s_nom: 2000. + type: '' + +load: + power_statistics: true # only for files from <2019; set false in order to get ENTSOE transparency data + interpolate_limit: 3 # data gaps up until this size are interpolated linearly + time_shift_for_large_gaps: 1w # data gaps up until this size are copied by copying from + manual_adjustments: true # false + scaling_factor: 1.0 + +# regulate what components with which carriers are kept from PyPSA-Eur; +# some technologies are removed because they are implemented differently +# (e.g. battery or H2 storage) or have different year-dependent costs +# in PyPSA-Eur-Sec +pypsa_eur: + Bus: + - AC + Link: + - DC + Generator: + - onwind + - offwind-ac + - offwind-dc + - solar + - ror + StorageUnit: + - PHS + - hydro + Store: [] + +energy: + energy_totals_year: 2011 + base_emissions_year: 1990 + eurostat_report_year: 2016 + emissions: CO2 # "CO2" or "All greenhouse gases - (CO2 equivalent)" + +biomass: + year: 2030 + scenario: ENS_Med + classes: + solid biomass: + - Agricultural waste + - Fuelwood residues + - Secondary Forestry residues - woodchips + - Sawdust + - Residues from landscape care + - Municipal waste + not included: + - Sugar from sugar beet + - Rape seed + - "Sunflower, soya seed " + - Bioethanol barley, wheat, grain maize, oats, other cereals and rye + - Miscanthus, switchgrass, RCG + - Willow + - Poplar + - FuelwoodRW + - C&P_RW + biogas: + - Manure solid, liquid + - Sludge + + +solar_thermal: + clearsky_model: simple # should be "simple" or "enhanced"? + orientation: + slope: 45. + azimuth: 180. + +# only relevant for foresight = myopic or perfect +existing_capacities: + grouping_years_power: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020 + threshold_capacity: 10 + conventional_carriers: + - lignite + - coal + - oil + - uranium + + +sector: + district_heating: + potential: 0.6 # maximum fraction of urban demand which can be supplied by district heating + # increase of today's district heating demand to potential maximum district heating share + # progress = 0 means today's district heating share, progress = 1 means maximum fraction of urban demand is supplied by district heating + progress: + 2020: 0.0 + 2030: 0.3 + 2040: 0.6 + 2050: 1.0 + district_heating_loss: 0.15 + cluster_heat_buses: false # cluster residential and service heat buses to one to save memory + bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM + bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value + transport_heating_deadband_upper: 20. + transport_heating_deadband_lower: 15. + ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband + ICE_upper_degree_factor: 1.6 + EV_lower_degree_factor: 0.98 + EV_upper_degree_factor: 0.63 + bev_dsm: true #turns on EV battery + bev_availability: 0.5 #How many cars do smart charging + bev_energy: 0.05 #average battery size in MWh + bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency + bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S + bev_charge_rate: 0.011 #3-phase charger with 11 kW + bev_avail_max: 0.95 + bev_avail_mean: 0.8 + v2g: true #allows feed-in to grid from EV battery + #what is not EV or FCEV is oil-fuelled ICE + land_transport_fuel_cell_share: + 2020: 0 + 2030: 0.05 + 2040: 0.1 + 2050: 0.15 + land_transport_electric_share: + 2020: 0 + 2030: 0.25 + 2040: 0.6 + 2050: 0.85 + land_transport_ice_share: + 2020: 1 + 2030: 0.7 + 2040: 0.3 + 2050: 0 + transport_fuel_cell_efficiency: 0.5 + transport_internal_combustion_efficiency: 0.3 + agriculture_machinery_electric_share: 0 + agriculture_machinery_oil_share: 1 + agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use + agriculture_machinery_electric_efficiency: 0.3 # electricity per use + MWh_MeOH_per_MWh_H2: 0.8787 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64. + MWh_MeOH_per_tCO2: 4.0321 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64. + MWh_MeOH_per_MWh_e: 3.6907 # in LHV, source: DECHEMA (2017): Low carbon energy and feedstock for the European chemical industry , pg. 64. + shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands + shipping_hydrogen_share: + 2020: 0 + 2030: 0 + 2040: 0 + 2050: 0 + shipping_methanol_share: + 2020: 0 + 2030: 0.3 + 2040: 0.7 + 2050: 1 + shipping_oil_share: + 2020: 1 + 2030: 0.7 + 2040: 0.3 + 2050: 0 + shipping_methanol_efficiency: 0.46 # 10-15% higher https://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_56.pdf, https://users.ugent.be/~lsileghe/documents/extended_abstract.pdf + shipping_oil_efficiency: 0.40 #For conversion of fuel oil to propulsion in 2011 + aviation_demand_factor: 1. # relative aviation demand compared to today + HVC_demand_factor: 1. # relative HVC demand compared to today + time_dep_hp_cop: true #time dependent heat pump coefficient of performance + heat_pump_sink_T: 55. # Celsius, based on DTU / large area radiators; used in build_cop_profiles.py + # conservatively high to cover hot water and space heating in poorly-insulated buildings + reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH) + # this can represent e.g. building renovation, building demolition, or if + # the factor is negative: increasing floor area, increased thermal comfort, population growth + reduce_space_heat_exogenously_factor: # per unit reduction in space heat demand + # the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221 + 2020: 0.10 # this results in a space heat demand reduction of 10% + 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita + 2030: 0.09 + 2035: 0.11 + 2040: 0.16 + 2045: 0.21 + 2050: 0.29 + retrofitting: # co-optimises building renovation to reduce space heat demand + retro_endogen: false # co-optimise space heat savings + cost_factor: 1.0 # weight costs for building renovation + interest_rate: 0.04 # for investment in building components + annualise_cost: true # annualise the investment costs + tax_weighting: false # weight costs depending on taxes in countries + construction_index: true # weight costs depending on labour/material costs per country + tes: true + tes_tau: # 180 day time constant for centralised, 3 day for decentralised + decentral: 3 + central: 180 + boilers: true + oil_boilers: false + biomass_boiler: true + chp: true + micro_chp: false + solar_thermal: true + solar_cf_correction: 0.788457 # = >>> 1/1.2683 + marginal_cost_storage: 0. #1e-4 + methanation: true + helmeth: true + coal_cc: false + dac: true + co2_vent: false + allam_cycle: false + SMR: true + regional_co2_sequestration_potential: + enable: false # enable regionally resolved geological co2 storage potential + attribute: 'conservative estimate Mt' + include_onshore: false # include onshore sequestration potentials + min_size: 3 # Gt, sites with lower potential will be excluded + max_size: 25 # Gt, max sequestration potential for any one site, TODO research suitable value + years_of_storage: 25 # years until potential exhausted at optimised annual rate + co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe + co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2 + co2_spatial: false + co2network: false + cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture + hydrogen_underground_storage: true + hydrogen_underground_storage_locations: + # - onshore # more than 50 km from sea + - nearshore # within 50 km of sea + # - offshore + ammonia: false # can be false (no NH3 carrier), true (copperplated NH3), "regional" (regionalised NH3 without network) + min_part_load_fischer_tropsch: 0.9 # p_min_pu + min_part_load_methanolisation: 0.5 # p_min_pu + use_fischer_tropsch_waste_heat: true + use_fuel_cell_waste_heat: true + use_electrolysis_waste_heat: false + electricity_distribution_grid: true + electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv + electricity_grid_connection: true # only applies to onshore wind and utility PV + H2_network: true + gas_network: false + H2_retrofit: false # if set to True existing gas pipes can be retrofitted to H2 pipes + # according to hydrogen backbone strategy (April, 2020) p.15 + # https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf + # 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity + H2_retrofit_capacity_per_CH4: 0.6 # ratio for H2 capacity per original CH4 capacity of retrofitted pipelines + gas_network_connectivity_upgrade: 1 # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation + gas_distribution_grid: true + gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv + biomass_spatial: false # regionally resolve biomass (e.g. potentials) + biomass_transport: false # allow transport of solid biomass between nodes + conventional_generation: # generator : carrier + OCGT: gas + biomass_to_liquid: false + biosng: false + +industry: + St_primary_fraction: # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6 + 2020: 0.6 + 2025: 0.55 + 2030: 0.5 + 2035: 0.45 + 2040: 0.4 + 2045: 0.35 + 2050: 0.3 + DRI_fraction: # fraction of the primary route converted to DRI + EAF + 2020: 0 + 2025: 0 + 2030: 0.05 + 2035: 0.2 + 2040: 0.4 + 2045: 0.7 + 2050: 1 + H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279 + elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf + Al_primary_fraction: # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4 + 2020: 0.4 + 2025: 0.375 + 2030: 0.35 + 2035: 0.325 + 2040: 0.3 + 2045: 0.25 + 2050: 0.2 + MWh_NH3_per_tNH3: 5.166 # LHV + MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf + MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3 + MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy) + MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB) + MWh_NH3_per_MWh_H2_cracker: 1.46 # https://github.com/euronion/trace/blob/44a5ff8401762edbef80eff9cfe5a47c8d3c8be4/data/efficiencies.csv + NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28 + petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28 + HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route + HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling + HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling + HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX + MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756. + MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking + chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43 + MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43 + MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process + methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62 + MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65 + MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65 + hotmaps_locate_missing: false + reference_year: 2015 + # references: + # DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf + # Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050 + +costs: + year: 2030 + version: v0.5.0 + rooftop_share: 0.14 # based on the potentials, assuming (0.1 kW/m2 and 10 m2/person) + fill_values: + FOM: 0 + VOM: 0 + efficiency: 1 + fuel: 0 + investment: 0 + lifetime: 25 + "CO2 intensity": 0 + "discount rate": 0.07 + # Marginal and capital costs can be overwritten + # capital_cost: + # onwind: 500 + marginal_cost: + solar: 0.01 + onwind: 0.015 + offwind: 0.015 + hydro: 0. + H2: 0. + electrolysis: 0. + fuel cell: 0. + battery: 0. + battery inverter: 0. + emission_prices: # in currency per tonne emission, only used with the option Ep + co2: 0. + +clustering: + simplify_network: + to_substations: false # network is simplified to nodes with positive or negative power injection (i.e. substations or offwind connections) + algorithm: kmeans # choose from: [hac, kmeans] + feature: solar+onwind-time # only for hac. choose from: [solar+onwind-time, solar+onwind-cap, solar-time, solar-cap, solar+offwind-cap] etc. + exclude_carriers: [] + remove_stubs: true + remove_stubs_across_borders: true + cluster_network: + algorithm: kmeans + feature: solar+onwind-time + exclude_carriers: [] + aggregation_strategies: + generators: + p_nom_max: sum # use "min" for more conservative assumptions + p_nom_min: sum + p_min_pu: mean + marginal_cost: mean + committable: any + ramp_limit_up: max + ramp_limit_down: max + efficiency: mean + +solving: + #tmpdir: "path/to/tmp" + options: + formulation: kirchhoff + clip_p_max_pu: 1.e-2 + load_shedding: false + noisy_costs: true + skip_iterations: true + track_iterations: false + min_iterations: 4 + max_iterations: 6 + seed: 123 + + solver: + name: gurobi + options: gurobi-default + + solver_options: + highs-default: + # refer to https://ergo-code.github.io/HiGHS/options/definitions.html#solver + threads: 4 + solver: "ipm" + run_crossover: "off" + small_matrix_value: 1e-6 + large_matrix_value: 1e9 + primal_feasibility_tolerance: 1e-5 + dual_feasibility_tolerance: 1e-5 + ipm_optimality_tolerance: 1e-4 + parallel: "on" + random_seed: 123 + gurobi-default: + threads: 4 + method: 2 # barrier + crossover: 0 + BarConvTol: 1.e-6 + Seed: 123 + AggFill: 0 + PreDual: 0 + GURO_PAR_BARDENSETHRESH: 200 + seed: 10 # Consistent seed for all plattforms + gurobi-numeric-focus: + name: gurobi + NumericFocus: 3 # Favour numeric stability over speed + method: 2 # barrier + crossover: 0 # do not use crossover + BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge + BarConvTol: 1.e-5 + FeasibilityTol: 1.e-4 + OptimalityTol: 1.e-4 + ObjScale: -0.5 + threads: 8 + Seed: 123 + gurobi-fallback: # Use gurobi defaults + name: gurobi + crossover: 0 + method: 2 # barrier + BarHomogeneous: 1 # Use homogeneous barrier if standard does not converge + BarConvTol: 1.e-5 + FeasibilityTol: 1.e-5 + OptimalityTol: 1.e-5 + Seed: 123 + threads: 8 + cplex-default: + threads: 4 + lpmethod: 4 # barrier + solutiontype: 2 # non basic solution, ie no crossover + barrier.convergetol: 1.e-5 + feasopt.tolerance: 1.e-6 + cbc-default: {} # Used in CI + glpk-default: {} # Used in CI + + mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2 + + +plotting: + map: + boundaries: [-11, 30, 34, 71] + color_geomap: + ocean: white + land: white + eu_node_location: + x: -5.5 + y: 46. + costs_max: 1000 + costs_threshold: 1 + energy_max: 20000 + energy_min: -20000 + energy_threshold: 50. + vre_techs: + - onwind + - offwind-ac + - offwind-dc + - solar + - ror + renewable_storage_techs: + - PHS + - hydro + conv_techs: + - OCGT + - CCGT + - Nuclear + - Coal + storage_techs: + - hydro+PHS + - battery + - H2 + load_carriers: + - AC load + AC_carriers: + - AC line + - AC transformer + link_carriers: + - DC line + - Converter AC-DC + heat_links: + - heat pump + - resistive heater + - CHP heat + - CHP electric + - gas boiler + - central heat pump + - central resistive heater + - central CHP heat + - central CHP electric + - central gas boiler + heat_generators: + - gas boiler + - central gas boiler + - solar thermal collector + - central solar thermal collector + + nice_names: + OCGT: "Open-Cycle Gas" + CCGT: "Combined-Cycle Gas" + offwind-ac: "Offshore Wind (AC)" + offwind-dc: "Offshore Wind (DC)" + onwind: "Onshore Wind" + solar: "Solar" + PHS: "Pumped Hydro Storage" + hydro: "Reservoir & Dam" + battery: "Battery Storage" + H2: "Hydrogen Storage" + lines: "Transmission Lines" + ror: "Run of River" + + tech_colors: + # wind + onwind: "#235ebc" + onshore wind: "#235ebc" + offwind: "#6895dd" + offshore wind: "#6895dd" + offwind-ac: "#6895dd" + offshore wind (AC): "#6895dd" + offshore wind ac: "#6895dd" + offwind-dc: "#74c6f2" + offshore wind (DC): "#74c6f2" + offshore wind dc: "#74c6f2" + # water + hydro: '#298c81' + hydro reservoir: '#298c81' + ror: '#3dbfb0' + run of river: '#3dbfb0' + hydroelectricity: '#298c81' + PHS: '#51dbcc' + hydro+PHS: "#08ad97" + wave: '#a7d4cf' + # solar + solar: "#f9d002" + solar PV: "#f9d002" + solar thermal: '#ffbf2b' + solar rooftop: '#ffea80' + # gas + OCGT: '#e0986c' + OCGT marginal: '#e0986c' + OCGT-heat: '#e0986c' + gas boiler: '#db6a25' + gas boilers: '#db6a25' + gas boiler marginal: '#db6a25' + gas: '#e05b09' + fossil gas: '#e05b09' + natural gas: '#e05b09' + CCGT: '#a85522' + CCGT marginal: '#a85522' + allam: '#B98F76' + gas for industry co2 to atmosphere: '#692e0a' + gas for industry co2 to stored: '#8a3400' + gas for industry: '#853403' + gas for industry CC: '#692e0a' + gas pipeline: '#ebbca0' + gas pipeline new: '#a87c62' + # oil + oil: '#c9c9c9' + oil boiler: '#adadad' + agriculture machinery oil: '#949494' + shipping oil: "#808080" + land transport oil: '#afafaf' + # nuclear + Nuclear: '#ff8c00' + Nuclear marginal: '#ff8c00' + nuclear: '#ff8c00' + uranium: '#ff8c00' + # coal + Coal: '#545454' + coal: '#545454' + Coal marginal: '#545454' + solid: '#545454' + Lignite: '#826837' + lignite: '#826837' + Lignite marginal: '#826837' + # biomass + biogas: '#e3d37d' + biomass: '#baa741' + solid biomass: '#baa741' + solid biomass transport: '#baa741' + solid biomass for industry: '#7a6d26' + solid biomass for industry CC: '#47411c' + solid biomass for industry co2 from atmosphere: '#736412' + solid biomass for industry co2 to stored: '#47411c' + biomass boiler: '#8A9A5B' + biomass to liquid: '#32CD32' + BioSNG: '#123456' + # power transmission + lines: '#6c9459' + transmission lines: '#6c9459' + electricity distribution grid: '#97ad8c' + # electricity demand + Electric load: '#110d63' + electric demand: '#110d63' + electricity: '#110d63' + industry electricity: '#2d2a66' + industry new electricity: '#2d2a66' + agriculture electricity: '#494778' + # battery + EVs + battery: '#ace37f' + battery storage: '#ace37f' + home battery: '#80c944' + home battery storage: '#80c944' + BEV charger: '#baf238' + V2G: '#e5ffa8' + land transport EV: '#baf238' + Li ion: '#baf238' + # hot water storage + water tanks: '#e69487' + hot water storage: '#e69487' + hot water charging: '#e69487' + hot water discharging: '#e69487' + # heat demand + Heat load: '#cc1f1f' + heat: '#cc1f1f' + heat demand: '#cc1f1f' + rural heat: '#ff5c5c' + central heat: '#cc1f1f' + decentral heat: '#750606' + low-temperature heat for industry: '#8f2727' + process heat: '#ff0000' + agriculture heat: '#d9a5a5' + # heat supply + heat pumps: '#2fb537' + heat pump: '#2fb537' + air heat pump: '#36eb41' + ground heat pump: '#2fb537' + Ambient: '#98eb9d' + CHP: '#8a5751' + CHP CC: '#634643' + CHP heat: '#8a5751' + CHP electric: '#8a5751' + district heating: '#e8beac' + resistive heater: '#d8f9b8' + retrofitting: '#8487e8' + building retrofitting: '#8487e8' + # hydrogen + H2 for industry: "#f073da" + H2 for shipping: "#ebaee0" + H2: '#bf13a0' + hydrogen: '#bf13a0' + SMR: '#870c71' + SMR CC: '#4f1745' + H2 liquefaction: '#d647bd' + hydrogen storage: '#bf13a0' + H2 storage: '#bf13a0' + land transport fuel cell: '#6b3161' + H2 pipeline: '#f081dc' + H2 pipeline retrofitted: '#ba99b5' + H2 Fuel Cell: '#c251ae' + H2 Electrolysis: '#ff29d9' + # ammonia + NH3: '#46caf0' + ammonia: '#46caf0' + ammonia store: '#00ace0' + ammonia cracker: '#87d0e6' + Haber-Bosch: '#076987' + # syngas + Sabatier: '#9850ad' + methanation: '#c44ce6' + methane: '#c44ce6' + helmeth: '#e899ff' + # synfuels + Fischer-Tropsch: '#25c49a' + liquid: '#25c49a' + kerosene for aviation: '#a1ffe6' + naphtha for industry: '#57ebc4' + methanolisation: '#83d6d5' + methanol: '#468c8b' + shipping methanol: '#468c8b' + # co2 + CC: '#f29dae' + CCS: '#f29dae' + CO2 sequestration: '#f29dae' + DAC: '#ff5270' + co2 stored: '#f2385a' + co2: '#f29dae' + co2 vent: '#ffd4dc' + CO2 pipeline: '#f5627f' + # emissions + process emissions CC: '#000000' + process emissions: '#222222' + process emissions to stored: '#444444' + process emissions to atmosphere: '#888888' + oil emissions: '#aaaaaa' + shipping oil emissions: "#555555" + shipping methanol emissions: '#666666' + land transport oil emissions: '#777777' + agriculture machinery oil emissions: '#333333' + # other + shipping: '#03a2ff' + power-to-heat: '#2fb537' + power-to-gas: '#c44ce6' + power-to-H2: '#ff29d9' + power-to-liquid: '#25c49a' + gas-to-power/heat: '#ee8340' + waste: '#e3d37d' + other: '#000000' + geothermal: '#ba91b1' + AC-AC: "#70af1d" + AC line: "#70af1d" + links: "#8a1caf" + HVDC links: "#8a1caf" + DC-DC: "#8a1caf" + DC link: "#8a1caf" diff --git a/configs/test/config.electricity.yaml b/configs/test/config.electricity.yaml new file mode 100644 index 00000000..6798e38c --- /dev/null +++ b/configs/test/config.electricity.yaml @@ -0,0 +1,80 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +tutorial: true + + +run: + name: "test-elec" # use this to keep track of runs with different settings + disable_progressbar: true + shared_resources: true + shared_cutouts: true + +scenario: + clusters: + - 5 + opts: + - Co2L-24H + +countries: ['BE'] + +snapshots: + start: "2013-03-01" + end: "2013-03-08" + +electricity: + co2limit: 100.e+6 + + extendable_carriers: + Generator: [OCGT] + StorageUnit: [battery] + Store: [H2] + Link: [H2 pipeline] + + renewable_carriers: [solar, onwind, offwind-ac, offwind-dc] + + +atlite: + default_cutout: be-03-2013-era5 + cutouts: + be-03-2013-era5: + module: era5 + x: [4., 15.] + y: [46., 56.] + time: ["2013-03-01", "2013-03-08"] + +renewable: + onwind: + cutout: be-03-2013-era5 + offwind-ac: + cutout: be-03-2013-era5 + max_depth: false + offwind-dc: + cutout: be-03-2013-era5 + max_depth: false + solar: + cutout: be-03-2013-era5 + + +clustering: + exclude_carriers: ["OCGT", "offwind-ac", "coal"] + + +solving: + solver: + name: glpk + options: "glpk-default" + + +plotting: + map: + boundaries: + eu_node_location: + x: -5.5 + y: 46. + costs_max: 1000 + costs_threshold: 0.0000001 + energy_max: + energy_min: + energy_threshold: 0.000001 diff --git a/configs/test/config.myopic.yaml b/configs/test/config.myopic.yaml new file mode 100644 index 00000000..efa03136 --- /dev/null +++ b/configs/test/config.myopic.yaml @@ -0,0 +1,79 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +tutorial: true + +run: + name: "test-sector-myopic" + disable_progressbar: true + shared_resources: true + shared_cutouts: true + +foresight: myopic + +scenario: + ll: + - v1.5 + clusters: + - 5 + sector_opts: + - 24H-T-H-B-I-A-solar+p3-dist1 + planning_horizons: + - 2030 + - 2040 + - 2050 + +countries: ['BE'] + +snapshots: + start: "2013-03-01" + end: "2013-03-08" + +electricity: + renewable_carriers: [solar, onwind, offwind-ac, offwind-dc] + +atlite: + default_cutout: be-03-2013-era5 + cutouts: + be-03-2013-era5: + module: era5 + x: [4., 15.] + y: [46., 56.] + time: ["2013-03-01", "2013-03-08"] + +renewable: + onwind: + cutout: be-03-2013-era5 + offwind-ac: + cutout: be-03-2013-era5 + max_depth: false + offwind-dc: + cutout: be-03-2013-era5 + max_depth: false + solar: + cutout: be-03-2013-era5 + +industry: + St_primary_fraction: + 2030: 0.6 + 2040: 0.5 + 2050: 0.4 + +solving: + solver: + name: glpk + options: glpk-default + mem: 4000 + +plotting: + map: + boundaries: + eu_node_location: + x: -5.5 + y: 46. + costs_max: 1000 + costs_threshold: 0.0000001 + energy_max: + energy_min: + energy_threshold: 0.000001 diff --git a/configs/test/config.overnight.yaml b/configs/test/config.overnight.yaml new file mode 100644 index 00000000..fb468ded --- /dev/null +++ b/configs/test/config.overnight.yaml @@ -0,0 +1,74 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +tutorial: true + +run: + name: "test-sector-overnight" + disable_progressbar: true + shared_resources: true + shared_cutouts: true + + +scenario: + ll: + - v1.5 + clusters: + - 5 + sector_opts: + - CO2L0-24H-T-H-B-I-A-solar+p3-dist1 + planning_horizons: + - 2030 + +countries: ['BE'] + +snapshots: + start: "2013-03-01" + end: "2013-03-08" + +electricity: + renewable_carriers: [solar, onwind, offwind-ac, offwind-dc] + +atlite: + default_cutout: be-03-2013-era5 + cutouts: + be-03-2013-era5: + module: era5 + x: [4., 15.] + y: [46., 56.] + time: ["2013-03-01", "2013-03-08"] + +renewable: + onwind: + cutout: be-03-2013-era5 + offwind-ac: + cutout: be-03-2013-era5 + max_depth: false + offwind-dc: + cutout: be-03-2013-era5 + max_depth: false + solar: + cutout: be-03-2013-era5 + +sector: + gas_network: true + H2_retrofit: true + +solving: + solver: + name: glpk + options: glpk-default + mem: 4000 + +plotting: + map: + boundaries: + eu_node_location: + x: -5.5 + y: 46. + costs_max: 1000 + costs_threshold: 0.0000001 + energy_max: + energy_min: + energy_threshold: 0.000001