diff --git a/scripts/make_summary_perfect.py b/scripts/make_summary_perfect.py index d401b28e..d68ac628 100644 --- a/scripts/make_summary_perfect.py +++ b/scripts/make_summary_perfect.py @@ -246,8 +246,9 @@ def calculate_energy(n, label, energy): .groupby(level=0) .sum() .multiply(c.df.sign) - .groupby(c.df.carrier, axis=1) + .T.groupby(c.df.carrier) .sum() + .T ) else: c_energies = pd.DataFrame( @@ -394,16 +395,9 @@ def calculate_supply_energy(n, label, supply_energy): if len(items) == 0: continue - s = ( - (-1) - * c.pnl["p" + end] - .reindex(items, axis=1) - .multiply(n.snapshot_weightings.objective, axis=0) - .groupby(level=0) - .sum() - .groupby(c.df.loc[items, "carrier"], axis=1) - .sum() - ).T + s = (-1) * c.pnl["p" + end].reindex(items, axis=1).multiply( + n.snapshot_weightings.objective, axis=0 + ).groupby(level=0).sum().T.groupby(c.df.loc[items, "carrier"]).sum() s.index = s.index + end s = pd.concat([s], keys=[c.list_name]) s = pd.concat([s], keys=[i]) @@ -514,9 +508,7 @@ def calculate_weighted_prices(n, label, weighted_prices): if names.empty: continue - load += ( - n.links_t.p0[names].groupby(n.links.loc[names, "bus0"], axis=1).sum() - ) + load += n.links_t.p0[names].T.groupby(n.links.loc[names, "bus0"]).sum() # Add H2 Store when charging # if carrier == "H2": @@ -557,9 +549,9 @@ def calculate_market_values(n, label, market_values): dispatch = ( n.generators_t.p[gens] - .groupby(n.generators.loc[gens, "bus"], axis=1) + .T.groupby(n.generators.loc[gens, "bus"]) .sum() - .reindex(columns=buses, fill_value=0.0) + .T.reindex(columns=buses, fill_value=0.0) ) revenue = dispatch * n.buses_t.marginal_price[buses] @@ -583,9 +575,9 @@ def calculate_market_values(n, label, market_values): dispatch = ( n.links_t["p" + i][links] - .groupby(n.links.loc[links, "bus" + i], axis=1) + .T.groupby(n.links.loc[links, "bus" + i]) .sum() - .reindex(columns=buses, fill_value=0.0) + .T.reindex(columns=buses, fill_value=0.0) ) revenue = dispatch * n.buses_t.marginal_price[buses] @@ -652,7 +644,7 @@ def calculate_co2_emissions(n, label, df): emitted = n.generators_t.p[gens.index].mul(em_pu) emitted_grouped = ( - emitted.groupby(level=0).sum().groupby(n.generators.carrier, axis=1).sum().T + emitted.groupby(level=0).sum().T.groupby(n.generators.carrier).sum().T ) df = df.reindex(emitted_grouped.index.union(df.index))