diff --git a/scripts/make_summary.py b/scripts/make_summary.py new file mode 100644 index 00000000..a806b056 --- /dev/null +++ b/scripts/make_summary.py @@ -0,0 +1,450 @@ + +from six import iteritems + +import sys + +sys.path = ['/home/vres/lib/python3.5/site-packages'] + sys.path + +import pandas as pd + +import pypsa + +from vresutils.costdata import annuity + +from prepare_network import generate_periodic_profiles + +import yaml + +import helper + +idx = pd.IndexSlice + +opt_name = {"Store": "e", "Line" : "s", "Transformer" : "s"} + + +#separator to find group name +find_by = " " + +#defaults for group name +defaults = {"Load" : "electricity", "Link" : "transmission lines"} + + +def assign_groups(n): + for c in n.iterate_components(n.one_port_components|n.branch_components): + + c.df["group"] = defaults.get(c.name,"default") + + ifind = pd.Series(c.df.index.str.find(find_by),c.df.index) + + for i in ifind.value_counts().index: + #these have already been assigned defaults + if i == -1: + continue + + names = ifind.index[ifind == i] + + c.df.loc[names,'group'] = names.str[i+1:] + + + + +def calculate_costs(n,label,costs): + + for c in n.iterate_components(n.branch_components|n.controllable_one_port_components^{"Load"}): + capital_costs = c.df.capital_cost*c.df[opt_name.get(c.name,"p") + "_nom_opt"] + capital_costs_grouped = capital_costs.groupby(c.df.group).sum() + + costs = costs.reindex(costs.index|pd.MultiIndex.from_product([[c.list_name],["capital"],capital_costs_grouped.index])) + + costs.loc[idx[c.list_name,"capital",list(capital_costs_grouped.index)],label] = capital_costs_grouped.values + + if c.name == "Link": + p = c.pnl.p0.sum() + elif c.name == "StorageUnit": + p_all = c.pnl.p.copy() + p_all[p_all < 0.] = 0. + p = p_all.sum() + else: + p = c.pnl.p.sum() + + marginal_costs = p*c.df.marginal_cost + + marginal_costs_grouped = marginal_costs.groupby(c.df.group).sum() + + costs = costs.reindex(costs.index|pd.MultiIndex.from_product([[c.list_name],["marginal"],marginal_costs_grouped.index])) + + costs.loc[idx[c.list_name,"marginal",list(marginal_costs_grouped.index)],label] = marginal_costs_grouped.values + + #add back in costs of links if there is a line volume limit + if label[1] != "opt": + costs.loc[("links-added","capital","transmission lines"),label] = ((400*1.25*n.links.length+150000.)*n.links.p_nom_opt)[n.links.group == "transmission lines"].sum()*1.5*(annuity(40., 0.07)+0.02) + + #add back in all hydro + costs.loc[("storage_units","capital","hydro"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="hydro","p_nom"].sum() + costs.loc[("storage_units","capital","PHS"),label] = (0.01)*2e6*n.storage_units.loc[n.storage_units.group=="PHS","p_nom"].sum() + costs.loc[("generators","capital","ror"),label] = (0.02)*3e6*n.generators.loc[n.generators.group=="ror","p_nom"].sum() + + return costs + + + +def calculate_curtailment(n,label,curtailment): + + avail = n.generators_t.p_max_pu.multiply(n.generators.p_nom_opt).sum().groupby(n.generators.group).sum() + used = n.generators_t.p.sum().groupby(n.generators.group).sum() + + curtailment[label] = (((avail - used)/avail)*100).round(3) + + return curtailment + +def calculate_energy(n,label,energy): + + for c in n.iterate_components(n.one_port_components|n.branch_components): + + if c.name in n.one_port_components: + c_energies = c.pnl.p.sum().multiply(c.df.sign).groupby(c.df.group).sum() + else: + c_energies = (-c.pnl.p1.sum() - c.pnl.p0.sum()).groupby(c.df.group).sum() + + energy = energy.reindex(energy.index|pd.MultiIndex.from_product([[c.list_name],c_energies.index])) + + energy.loc[idx[c.list_name,list(c_energies.index)],label] = c_energies.values + + return energy + + +def calculate_supply(n,label,supply): + """calculate the max dispatch of each component at the buses where the loads are attached""" + + load_types = n.loads.group.value_counts().index + + for i in load_types: + + buses = n.loads.bus[n.loads.group == i].values + + bus_map = pd.Series(False,index=n.buses.index) + + bus_map.loc[buses] = True + + for c in n.iterate_components(n.one_port_components): + + items = c.df.index[c.df.bus.map(bus_map)] + + if len(items) == 0: + continue + + s = c.pnl.p[items].max().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'group']).sum() + + supply = supply.reindex(supply.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index])) + supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values + + + for c in n.iterate_components(n.branch_components): + + for end in ["0","1"]: + + items = c.df.index[c.df["bus" + end].map(bus_map)] + + if len(items) == 0: + continue + + #lots of sign compensation for direction and to do maximums + s = (-1)**(1-int(end))*((-1)**int(end)*c.pnl["p"+end][items]).max().groupby(c.df.loc[items,'group']).sum() + + supply = supply.reindex(supply.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index])) + supply.loc[idx[i,c.list_name,list(s.index)],label] = s.values + + return supply + +def calculate_supply_energy(n,label,supply_energy): + """calculate the total dispatch of each component at the buses where the loads are attached""" + + load_types = n.loads.group.value_counts().index + + for i in load_types: + + buses = n.loads.bus[n.loads.group == i].values + + bus_map = pd.Series(False,index=n.buses.index) + + bus_map.loc[buses] = True + + for c in n.iterate_components(n.one_port_components): + + items = c.df.index[c.df.bus.map(bus_map)] + + if len(items) == 0: + continue + + s = c.pnl.p[items].sum().multiply(c.df.loc[items,'sign']).groupby(c.df.loc[items,'group']).sum() + + supply_energy = supply_energy.reindex(supply_energy.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index])) + supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values + + + for c in n.iterate_components(n.branch_components): + + for end in ["0","1"]: + + items = c.df.index[c.df["bus" + end].map(bus_map)] + + if len(items) == 0: + continue + + s = (-1)*c.pnl["p"+end][items].sum().groupby(c.df.loc[items,'group']).sum() + + supply_energy = supply_energy.reindex(supply_energy.index|pd.MultiIndex.from_product([[i],[c.list_name],s.index])) + supply_energy.loc[idx[i,c.list_name,list(s.index)],label] = s.values + + return supply_energy + +def calculate_metrics(n,label,metrics): + + metrics = metrics.reindex(metrics.index|pd.Index(["line_volume","line_volume_shadow","co2_shadow"])) + + metrics.at["line_volume",label] = (n.links.length*n.links.p_nom_opt)[n.links.group == "transmission lines"].sum() + + if "line_volume_limit" in n.shadow_prices.index: + metrics.at["line_volume_shadow",label] = n.shadow_prices.at["line_volume_limit","value"] + + if "co2_constraint" in n.shadow_prices.index: + metrics.at["co2_shadow",label] = n.shadow_prices.at["co2_constraint","value"] + + return metrics + + +def calculate_prices(n,label,prices): + + bus_type = pd.Series(n.buses.index.str[3:],n.buses.index).replace("","electricity") + + prices = prices.reindex(prices.index|bus_type.value_counts().index) + + #WARNING: this is time-averaged, should really be load-weighted average + prices[label] = n.buses_t.marginal_price.mean().groupby(bus_type).mean() + + return prices + + + +def calculate_weighted_prices(n,label,weighted_prices): + # Warning: doesn't include storage units as loads + + + weighted_prices = weighted_prices.reindex(pd.Index(["electricity","heat","space heat","urban heat","space urban heat","gas","H2"])) + + link_loads = {"electricity" : ["heat pump", "resistive heater", "battery charger", "H2 Electrolysis"], + "heat" : ["water tanks charger"], + "urban heat" : ["water tanks charger"], + "space heat" : [], + "space urban heat" : [], + "gas" : ["OCGT","gas boiler","CHP electric","CHP heat"], + "H2" : ["Sabatier", "H2 Fuel Cell"]} + + for carrier in link_loads: + + if carrier == "electricity": + suffix = "" + elif carrier[:5] == "space": + suffix = carrier[5:] + else: + suffix = " " + carrier + + buses = n.buses.index[n.buses.index.str[2:] == suffix] + + if buses.empty: + continue + + if carrier in ["H2","gas"]: + load = pd.DataFrame(index=n.snapshots,columns=buses,data=0.) + elif carrier[:5] == "space": + load = heat_demand_df[buses.str[:2]].rename(columns=lambda i: str(i)+suffix) + else: + load = n.loads_t.p_set[buses] + + + for tech in link_loads[carrier]: + + names = n.links.index[n.links.index.to_series().str[-len(tech):] == tech] + + if names.empty: + continue + + load += n.links_t.p0[names].groupby(n.links.loc[names,"bus0"],axis=1).sum(axis=1) + + #Add H2 Store when charging + if carrier == "H2": + stores = n.stores_t.p[buses+ " Store"].groupby(n.stores.loc[buses+ " Store","bus"],axis=1).sum(axis=1) + stores[stores > 0.] = 0. + load += -stores + + weighted_prices.loc[carrier,label] = (load*n.buses_t.marginal_price[buses]).sum().sum()/load.sum().sum() + + if carrier[:5] == "space": + print(load*n.buses_t.marginal_price[buses]) + + return weighted_prices + + + + +def calculate_market_values(n, label, market_values): + # Warning: doesn't include storage units + + n.buses["suffix"] = n.buses.index.str[2:] + + suffix = "" + + buses = n.buses.index[n.buses.suffix == suffix] + + + ## First do market value of generators ## + + generators = n.generators.index[n.buses.loc[n.generators.bus,"suffix"] == suffix] + + techs = n.generators.loc[generators,"carrier"].value_counts().index + + market_values = market_values.reindex(market_values.index | techs) + + + for tech in techs: + gens = generators[n.generators.loc[generators,"carrier"] == tech] + + dispatch = n.generators_t.p[gens].groupby(n.generators.loc[gens,"bus"],axis=1).sum().reindex(columns=buses,fill_value=0.) + + revenue = dispatch*n.buses_t.marginal_price[buses] + + market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum() + + + + ## Now do market value of links ## + + for i in ["0","1"]: + all_links = n.links.index[n.buses.loc[n.links["bus"+i],"suffix"] == suffix] + + techs = n.links.loc[all_links,"group"].value_counts().index + + market_values = market_values.reindex(market_values.index | techs) + + for tech in techs: + links = all_links[n.links.loc[all_links,"group"] == tech] + + dispatch = n.links_t["p"+i][links].groupby(n.links.loc[links,"bus"+i],axis=1).sum().reindex(columns=buses,fill_value=0.) + + revenue = dispatch*n.buses_t.marginal_price[buses] + + market_values.at[tech,label] = revenue.sum().sum()/dispatch.sum().sum() + + return market_values + + +def calculate_price_statistics(n, label, price_statistics): + + + price_statistics = price_statistics.reindex(price_statistics.index|pd.Index(["zero_hours","mean","standard_deviation"])) + + n.buses["suffix"] = n.buses.index.str[2:] + + suffix = "" + + buses = n.buses.index[n.buses.suffix == suffix] + + + threshold = 0.1 #higher than phoney marginal_cost of wind/solar + + df = pd.DataFrame(data=0.,columns=buses,index=n.snapshots) + + df[n.buses_t.marginal_price[buses] < threshold] = 1. + + price_statistics.at["zero_hours", label] = df.sum().sum()/(df.shape[0]*df.shape[1]) + + price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].unstack().mean() + + price_statistics.at["standard_deviation", label] = n.buses_t.marginal_price[buses].unstack().std() + + return price_statistics + + +outputs = ["costs", + "curtailment", + "energy", + "supply", + "supply_energy", + "prices", + "weighted_prices", + "price_statistics", + "market_values", + "metrics", + ] + +def make_summaries(networks_dict): + + columns = pd.MultiIndex.from_tuples(networks_dict.keys(),names=["scenario","line_volume_limit","co2_reduction"]) + + df = {} + + for output in outputs: + df[output] = pd.DataFrame(columns=columns,dtype=float) + + for label, filename in iteritems(networks_dict): + print(label, filename) + + n = helper.Network(filename) + + assign_groups(n) + + for output in outputs: + df[output] = globals()["calculate_" + output](n, label, df[output]) + + return df + + +def to_csv(df): + + for key in df: + df[key].to_csv(snakemake.output[key]) + + +if __name__ == "__main__": + # Detect running outside of snakemake and mock snakemake for testing + if 'snakemake' not in globals(): + from vresutils import Dict + import yaml + snakemake = Dict() + with open('config.yaml') as f: + snakemake.config = yaml.load(f) + snakemake.input = Dict() + snakemake.input['heat_demand_name'] = 'data/heating/daily_heat_demand.h5' + snakemake.output = Dict() + for item in outputs: + snakemake.output[item] = snakemake.config['summary_dir'] + 'version-{version}/csvs/{item}.csv'.format(version=snakemake.config['version'],item=item) + + suffix = "nc" if int(snakemake.config['version']) > 100 else "h5" + + networks_dict = {(flexibility,line_limit,co2_reduction) : + '{results_dir}version-{version}/postnetworks/postnetwork-{flexibility}-{line_limit}-{co2_reduction}.{suffix}'\ + .format(results_dir=snakemake.config['results_dir'], + version=snakemake.config['version'], + flexibility=flexibility, + line_limit=line_limit, + co2_reduction=co2_reduction, + suffix=suffix)\ + for flexibility in snakemake.config['scenario']['flexibility'] for line_limit in snakemake.config['scenario']['line_limits'] + for co2_reduction in snakemake.config['scenario']['co2_reduction']} + + options = yaml.load(open("options.yml","r")) + + with pd.HDFStore(snakemake.input.heat_demand_name, mode='r') as store: + #the ffill converts daily values into hourly values + heat_demand_df = store['heat_demand_profiles'].reindex(index=pd.date_range(options['tmin'],options['tmax'],freq='H'), method="ffill") + + + intraday_profiles = pd.read_csv("data/heating/heat_load_profile_DK_AdamJensen.csv",index_col=0) + + intraday_year_profiles = generate_periodic_profiles(heat_demand_df.index.tz_localize("UTC"),weekly_profile=(list(intraday_profiles["weekday"])*5 + list(intraday_profiles["weekend"])*2)).tz_localize(None) + + heat_demand_df = heat_demand_df*intraday_year_profiles + + df = make_summaries(networks_dict) + + to_csv(df)