diff --git a/scripts/make_summary_perfect.py b/scripts/make_summary_perfect.py index 7ca4055d..81f57c67 100644 --- a/scripts/make_summary_perfect.py +++ b/scripts/make_summary_perfect.py @@ -28,6 +28,15 @@ idx = pd.IndexSlice opt_name = {"Store": "e", "Line": "s", "Transformer": "s"} +def reindex_columns(df, cols): + investments = cols.levels[3] + if len(cols.names)!=len(df.columns.levels): + df = pd.concat([df] * len(investments), axis=1) + df.columns = cols + df = df.reindex(cols, axis=1) + + return df + def calculate_costs(n, label, costs): investments = n.investment_periods cols = pd.MultiIndex.from_product( @@ -39,7 +48,8 @@ def calculate_costs(n, label, costs): ], names=costs.columns.names[:3] + ["year"], ) - costs = costs.reindex(cols, axis=1) + + costs = reindex_columns(costs, cols) for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} @@ -176,7 +186,7 @@ def calculate_capacities(n, label, capacities): ], names=capacities.columns.names[:3] + ["year"], ) - capacities = capacities.reindex(cols, axis=1) + capacities = reindex_columns(capacities, cols) for c in n.iterate_components( n.branch_components | n.controllable_one_port_components ^ {"Load"} @@ -229,7 +239,7 @@ def calculate_energy(n, label, energy): ], names=energy.columns.names[:3] + ["year"], ) - energy = energy.reindex(cols, axis=1) + energy = reindex_columns(energy, cols) for c in n.iterate_components(n.one_port_components | n.branch_components): if c.name in n.one_port_components: @@ -336,7 +346,7 @@ def calculate_supply_energy(n, label, supply_energy): ], names=supply_energy.columns.names[:3] + ["year"], ) - supply_energy = supply_energy.reindex(cols, axis=1) + supply_energy = reindex_columns(supply_energy, cols) bus_carriers = n.buses.carrier.unique() @@ -604,7 +614,7 @@ def calculate_price_statistics(n, label, price_statistics): price_statistics.at["mean", label] = n.buses_t.marginal_price[buses].mean().mean() price_statistics.at["standard_deviation", label] = ( - n.buses_t.marginal_price[buses].droplevel(0).unstack().std() + n.buses_t.marginal_price[buses].std().std() ) return price_statistics