From 3c099095dc50ce7d27d080686b005b49248cc216 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri, 6 Jan 2023 20:51:49 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- scripts/add_electricity.py | 4 ++-- scripts/build_hydro_profile.py | 4 +++- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/scripts/add_electricity.py b/scripts/add_electricity.py index e36b3d3e..0b2e2844 100755 --- a/scripts/add_electricity.py +++ b/scripts/add_electricity.py @@ -223,7 +223,7 @@ def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1. regions = gpd.read_file(regions).set_index("name").reindex(substation_lv_i) opsd_load = pd.read_csv(load, index_col=0, parse_dates=True).filter(items=countries) - ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={'name': 'str'}).set_index('name') + ua_md_gdp = pd.read_csv(ua_md_gdp, dtype={"name": "str"}).set_index("name") logger.info(f"Load data scaled with scalling factor {scaling}.") opsd_load *= scaling @@ -250,7 +250,7 @@ def attach_load(n, regions, load, nuts3_shapes, ua_md_gdp, countries, scaling=1. # relative factors 0.6 and 0.4 have been determined from a linear # regression on the country to continent load data factors = normed(0.6 * normed(gdp_n) + 0.4 * normed(pop_n)) - if cntry in ['UA', 'MD']: + if cntry in ["UA", "MD"]: # overwrite factor because nuts3 provides no data for UA+MD factors = normed(ua_md_gdp.loc[group.index, "GDP_PPP"].squeeze()) diff --git a/scripts/build_hydro_profile.py b/scripts/build_hydro_profile.py index aa3dd7b4..9831521a 100644 --- a/scripts/build_hydro_profile.py +++ b/scripts/build_hydro_profile.py @@ -73,7 +73,9 @@ cc = coco.CountryConverter() def get_eia_annual_hydro_generation(fn, countries): # in billion kWh/a = TWh/a - df = pd.read_csv(fn, skiprows=2, index_col=1, na_values=[" ", "--"], decimal=",").iloc[1:, 1:] + df = pd.read_csv( + fn, skiprows=2, index_col=1, na_values=[" ", "--"], decimal="," + ).iloc[1:, 1:] df.index = df.index.str.strip() former_countries = {