From 36fe57938c1363da47799dfbb127c9b19199c0cd Mon Sep 17 00:00:00 2001 From: ekatef Date: Wed, 27 Sep 2023 12:47:23 +0300 Subject: [PATCH] Replace pandas.append() --- scripts/build_retro_cost.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/scripts/build_retro_cost.py b/scripts/build_retro_cost.py index c830415e..c09e8744 100644 --- a/scripts/build_retro_cost.py +++ b/scripts/build_retro_cost.py @@ -223,7 +223,7 @@ def prepare_building_stock_data(): usecols=[0, 1, 2, 3], encoding="ISO-8859-1", ) - area_tot = area_tot.append(area_missing.unstack(level=-1).dropna().stack()) + area_tot = pd.concat([area_tot, area_missing.unstack(level=-1).dropna().stack()]) area_tot = area_tot.loc[~area_tot.index.duplicated(keep="last")] # for still missing countries calculate floor area by population size @@ -246,7 +246,7 @@ def prepare_building_stock_data(): averaged_data.index = index averaged_data["estimated"] = 1 if ct not in area_tot.index.levels[0]: - area_tot = area_tot.append(averaged_data, sort=True) + area_tot = pd.concat([area_tot, averaged_data], sort=True) else: area_tot.loc[averaged_data.index] = averaged_data @@ -272,7 +272,7 @@ def prepare_building_stock_data(): ][x["bage"]].iloc[0], axis=1, ) - data_PL_final = data_PL_final.append(data_PL) + data_PL_final = pd.concat([data_PL_final, data_PL]) u_values = pd.concat([u_values, data_PL_final]).reset_index(drop=True) @@ -966,7 +966,7 @@ def sample_dE_costs_area( .mean(level=1) .set_index(pd.MultiIndex.from_product([[ct], cost_dE.index.levels[1]])) ) - cost_dE = cost_dE.append(averaged_data) + cost_dE = pd.concat(cost_dE, averaged_data) # weights costs after construction index if construction_index: @@ -995,12 +995,12 @@ def sample_dE_costs_area( ) ) ) - cost_dE = cost_dE.append(tot).unstack().stack() + cost_dE = pd.concat(cost_dE, tot).unstack().stack() summed_area = pd.DataFrame(area_tot.groupby("country").sum()).set_index( pd.MultiIndex.from_product([area_tot.index.unique(level="country"), ["tot"]]) ) - area_tot = area_tot.append(summed_area).unstack().stack() + area_tot = pd.concat(area_tot, summed_area).unstack().stack() cost_per_saving = cost_dE["cost"] / ( 1 - cost_dE["dE"]