import datetime import io import pathlib import pickle import re import uuid import gym import numpy as np import tensorflow as tf import tensorflow.compat.v1 as tf1 # pylint: disable=E import tensorflow_probability as tfp from tensorflow.keras.mixed_precision import experimental as prec from tensorflow_probability import distributions as tfd class AttrDict(dict): __setattr__ = dict.__setitem__ __getattr__ = dict.__getitem__ def from_dict(self, src_dict): for key in src_dict: setattr(self, key, src_dict[key]) class Module(tf.Module): def save(self, filename): values = tf.nest.map_structure(lambda x: x.numpy(), self.variables) with pathlib.Path(filename).open('wb') as f: pickle.dump(values, f) def load(self, filename): with pathlib.Path(filename).open('rb') as f: values = pickle.load(f) tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values) def get(self, name, ctor, *args, **kwargs): # Create or get layer by name to avoid mentioning it in the constructor. if not hasattr(self, '_modules'): self._modules = {} if name not in self._modules: self._modules[name] = ctor(*args, **kwargs) return self._modules[name] def nest_summary(structure): if isinstance(structure, dict): return {k: nest_summary(v) for k, v in structure.items()} if isinstance(structure, list): return [nest_summary(v) for v in structure] if hasattr(structure, 'shape'): return str(structure.shape).replace(', ', 'x').strip('(), ') return '?' def graph_summary(writer, fn, step, *args): def inner(*args): tf.summary.experimental.set_step(step) with writer.as_default(): fn(*args) return tf.numpy_function(inner, args, []) def video_summary(name, video, step=None, fps=20): if isinstance(name, type(np.zeros(1))): name = str(name) else: name = name if isinstance(name, str) else name.decode('utf-8') if np.issubdtype(video.dtype, np.floating): video = np.clip(255 * video, 0, 255).astype(np.uint8) B, T, H, W, C = video.shape try: frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C)) summary = tf1.Summary() image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C) image.encoded_image_string = encode_gif(frames, fps) summary.value.add(tag=name + '/gif', image=image) tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step) except (IOError, OSError) as e: print('GIF summaries require ffmpeg in $PATH.', e) frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C)) tf.summary.image(name + '/grid', frames, step) def encode_gif(frames, fps): from subprocess import Popen, PIPE print(frames[0].shape) if frames[0].shape[-1] > 3: frames = np.transpose(frames, [0, 2, 3, 1]) h, w, c = frames[0].shape print(frames[0].shape) if c!=64: pxfmt = {1: 'gray', 3: 'rgb24'}[c] cmd = ' '.join([ f'ffmpeg -y -f rawvideo -vcodec rawvideo', f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex', f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse', f'-r {fps:.02f} -f gif -']) proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE) for image in frames: proc.stdin.write(image.tostring()) out, err = proc.communicate() if proc.returncode: raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')])) del proc return out def simulate(agent, envs, steps=0, episodes=0, state=None): # Initialize or unpack simulation state. if state is None: step, episode = 0, 0 done = np.ones(len(envs), np.bool) length = np.zeros(len(envs), np.int32) obs = [None] * len(envs) agent_state = None else: step, episode, done, length, obs, agent_state = state while (steps and step < steps) or (episodes and episode < episodes): # Reset envs if necessary. if done.any(): indices = [index for index, d in enumerate(done) if d] promises = [envs[i].reset(blocking=False) for i in indices] for index, promise in zip(indices, promises): obs[index] = promise() # Step agents. # if use augmentation, need to modify dreamer.policy or here. obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]} obs['image'] = tf.transpose(obs['image'], [0, 3, 2, 1]) action, agent_state = agent(obs, done, agent_state) action = np.array(action) assert len(action) == len(envs) # Step envs. promises = [e.step(a, blocking=False) for e, a in zip(envs, action)] obs, _, done = zip(*[p()[:3] for p in promises]) obs = list(obs) done = np.stack(done) episode += int(done.sum()) length += 1 step += (done * length).sum() length *= (1 - done) # Return new state to allow resuming the simulation. return (step - steps, episode - episodes, done, length, obs, agent_state) def count_episodes(directory): filenames = directory.glob('*.npz') lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames] episodes, steps = len(lengths), sum(lengths) return episodes, steps def save_episodes(directory, episodes): directory = pathlib.Path(directory).expanduser() directory.mkdir(parents=True, exist_ok=True) timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') for episode in episodes: identifier = str(uuid.uuid4().hex) length = len(episode['reward']) filename = directory / f'{timestamp}-{identifier}-{length}.npz' with io.BytesIO() as f1: np.savez_compressed(f1, **episode) f1.seek(0) with filename.open('wb') as f2: f2.write(f1.read()) def load_episodes(directory, rescan, length=None, balance=False, seed=0): directory = pathlib.Path(directory).expanduser() random = np.random.RandomState(seed) cache = {} while True: for filename in directory.glob('*.npz'): if filename not in cache: try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} except Exception as e: print(f'Could not load episode: {e}') continue cache[filename] = episode keys = list(cache.keys()) for index in random.choice(len(keys), rescan): episode = cache[keys[index]] if length: total = len(next(iter(episode.values()))) available = total - length if available < 1: print(f'Skipped short episode of length {available}({total}/{length}).') continue if balance: index = min(random.randint(0, total), available) else: index = int(random.randint(0, available)) episode = {k: v[index: index + length] for k, v in episode.items()} yield episode class DummyEnv: def __init__(self): self._random = np.random.RandomState(seed=0) self._step = None @property def observation_space(self): low = np.zeros([64, 64, 3], dtype=np.uint8) high = 255 * np.ones([64, 64, 3], dtype=np.uint8) spaces = {'image': gym.spaces.Box(low, high)} return gym.spaces.Dict(spaces) @property def action_space(self): low = -np.ones([5], dtype=np.float32) high = np.ones([5], dtype=np.float32) return gym.spaces.Box(low, high) def reset(self): self._step = 0 obs = self.observation_space.sample() return obs def step(self, action): obs = self.observation_space.sample() reward = self._random.uniform(0, 1) self._step += 1 done = self._step >= 1000 info = {} return obs, reward, done, info class SampleDist: def __init__(self, dist, samples=100): self._dist = dist self._samples = samples @property def name(self): return 'SampleDist' def __getattr__(self, name): return getattr(self._dist, name) def mean(self): samples = self._dist.sample(self._samples) return tf.reduce_mean(samples, 0) def mode(self): sample = self._dist.sample(self._samples) logprob = self._dist.log_prob(sample) return tf.gather(sample, tf.argmax(logprob))[0] # pylint: disable=E def entropy(self): sample = self._dist.sample(self._samples) logprob = self.log_prob(sample) return -tf.reduce_mean(logprob, 0) class OneHotDist: def __init__(self, logits=None, probs=None): self._dist = tfd.Categorical(logits=logits, probs=probs) self._num_classes = self.mean().shape[-1] self._dtype = prec.global_policy().compute_dtype @property def name(self): return 'OneHotDist' def __getattr__(self, name): return getattr(self._dist, name) def prob(self, events): indices = tf.argmax(events, axis=-1) return self._dist.prob(indices) def log_prob(self, events): indices = tf.argmax(events, axis=-1) return self._dist.log_prob(indices) def mean(self): return self._dist.probs_parameter() def mode(self): return self._one_hot(self._dist.mode()) def sample(self, amount=None): amount = [amount] if amount else [] indices = self._dist.sample(*amount) sample = self._one_hot(indices) probs = self._dist.probs_parameter() sample += tf.cast(probs - tf.stop_gradient(probs), self._dtype) return sample def _one_hot(self, indices): return tf.one_hot(indices, self._num_classes, dtype=self._dtype) # pylint: disable=E class TanhBijector(tfp.bijectors.Bijector): def __init__(self, validate_args=False, name='tanh'): super().__init__( forward_min_event_ndims=0, validate_args=validate_args, name=name) def _forward(self, x): return tf.nn.tanh(x) def _inverse(self, y): dtype = y.dtype y = tf.cast(y, tf.float32) y = tf.where( tf.less_equal(tf.abs(y), 1.), tf.clip_by_value(y, -0.99999997, 0.99999997), y) y = tf.atanh(y) y = tf.cast(y, dtype) return y def _forward_log_det_jacobian(self, x): log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype)) return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x)) def lambda_return( reward, value, pcont, bootstrap, lambda_, axis): # Setting lambda=1 gives a discounted Monte Carlo return. # Setting lambda=0 gives a fixed 1-step return. assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape) if isinstance(pcont, (int, float)): pcont = pcont * tf.ones_like(reward) dims = list(range(reward.shape.ndims)) dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:] if axis != 0: reward = tf.transpose(reward, dims) value = tf.transpose(value, dims) pcont = tf.transpose(pcont, dims) if bootstrap is None: bootstrap = tf.zeros_like(value[-1]) next_values = tf.concat([value[1:], bootstrap[None]], 0) inputs = reward + pcont * next_values * (1 - lambda_) returns = static_scan( lambda agg, cur: cur[0] + cur[1] * lambda_ * agg, (inputs, pcont), bootstrap, reverse=True) if axis != 0: returns = tf.transpose(returns, dims) return returns class Adam(tf.Module): def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'): self._name = name self._modules = modules self._clip = clip self._wd = wd self._wdpattern = wdpattern self._opt = tf.optimizers.Adam(lr) self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic') self._variables = None @property def variables(self): return self._opt.variables() def __call__(self, tape, loss): if self._variables is None: variables = [module.variables for module in self._modules] self._variables = tf.nest.flatten(variables) count = sum(np.prod(x.shape) for x in self._variables) print(f'Found {count} {self._name} parameters.') assert len(loss.shape) == 0, loss.shape with tape: loss = self._opt.get_scaled_loss(loss) grads = tape.gradient(loss, self._variables) grads = self._opt.get_unscaled_gradients(grads) norm = tf.linalg.global_norm(grads) if self._clip: grads, _ = tf.clip_by_global_norm(grads, self._clip, norm) if self._wd: context = tf.distribute.get_replica_context() context.merge_call(self._apply_weight_decay) self._opt.apply_gradients(zip(grads, self._variables)) return norm def _apply_weight_decay(self, strategy): print('Applied weight decay to variables:') for var in self._variables: if re.search(self._wdpattern, self._name + '/' + var.name): print('- ' + self._name + '/' + var.name) strategy.extended.update(var, lambda var: self._wd * var) def args_type(default): if isinstance(default, bool): return lambda x: bool(['False', 'True'].index(x)) if isinstance(default, int): return lambda x: float(x) if ('e' in x or '.' in x) else int(x) if isinstance(default, pathlib.Path): return lambda x: pathlib.Path(x).expanduser() return type(default) def static_scan(fn, inputs, start, reverse=False): last = start outputs = [[] for _ in tf.nest.flatten(start)] indices = range(len(tf.nest.flatten(inputs)[0])) if reverse: indices = reversed(indices) for index in indices: inp = tf.nest.map_structure(lambda x: x[index], inputs) last = fn(last, inp) [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))] if reverse: outputs = [list(reversed(x)) for x in outputs] outputs = [tf.stack(x, 0) for x in outputs] return tf.nest.pack_sequence_as(start, outputs) def _mnd_sample(self, sample_shape=(), seed=None, name='sample'): return tf.random.normal( tuple(sample_shape) + tuple(self.event_shape), self.mean(), self.stddev(), self.dtype, seed, name) tfd.MultivariateNormalDiag.sample = _mnd_sample def _cat_sample(self, sample_shape=(), seed=None, name='sample'): assert len(sample_shape) in (0, 1), sample_shape assert len(self.logits_parameter().shape) == 2 indices = tf.random.categorical( self.logits_parameter(), sample_shape[0] if sample_shape else 1, self.dtype, seed, name) if not sample_shape: indices = indices[..., 0] return indices tfd.Categorical.sample = _cat_sample class Every: def __init__(self, every): self._every = every self._last = None def __call__(self, step): if self._last is None: self._last = step return True if step >= self._last + self._every: self._last += self._every return True return False class Once: def __init__(self): self._once = True def __call__(self): if self._once: self._once = False return True return False