from torch.utils.tensorboard import SummaryWriter from collections import defaultdict import json import os import shutil import torch import torchvision import numpy as np from termcolor import colored from datetime import datetime FORMAT_CONFIG = { 'rl': { 'train': [ ('episode', 'E', 'int'), ('step', 'S', 'int'), ('duration', 'D', 'time'), ('episode_reward', 'R', 'float'), ('batch_reward', 'BR', 'float'), ('actor_loss', 'ALOSS', 'float'), ('critic_loss', 'CLOSS', 'float'), ('ae_loss', 'RLOSS', 'float') ], 'eval': [('step', 'S', 'int'), ('episode_reward', 'ER', 'float')] } } class AverageMeter(object): def __init__(self): self._sum = 0 self._count = 0 def update(self, value, n=1): self._sum += value self._count += n def value(self): return self._sum / max(1, self._count) class MetersGroup(object): def __init__(self, file_name, formating): self._file_name = file_name if os.path.exists(file_name): os.remove(file_name) self._formating = formating self._meters = defaultdict(AverageMeter) def log(self, key, value, n=1): self._meters[key].update(value, n) def _prime_meters(self): data = dict() for key, meter in self._meters.items(): if key.startswith('train'): key = key[len('train') + 1:] else: key = key[len('eval') + 1:] key = key.replace('/', '_') data[key] = meter.value() return data def _dump_to_file(self, data): with open(self._file_name, 'a') as f: f.write(json.dumps(data) + '\n') def _format(self, key, value, ty): template = '%s: ' if ty == 'int': template += '%d' elif ty == 'float': template += '%.04f' elif ty == 'time': template += '%.01f s' else: raise 'invalid format type: %s' % ty return template % (key, value) def _dump_to_console(self, data, prefix): prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green') pieces = ['{:5}'.format(prefix)] for key, disp_key, ty in self._formating: value = data.get(key, 0) pieces.append(self._format(disp_key, value, ty)) print('| %s' % (' | '.join(pieces))) def dump(self, step, prefix): if len(self._meters) == 0: return data = self._prime_meters() data['step'] = step self._dump_to_file(data) self._dump_to_console(data, prefix) self._meters.clear() class Logger(object): def __init__(self, log_dir, use_tb=True, config='rl'): self._log_dir = log_dir now = datetime.now() dt_string = now.strftime("%d_%m_%Y-%H_%M_%S") if use_tb: tb_dir = os.path.join(log_dir, 'runs/tb_'+dt_string) if os.path.exists(tb_dir): shutil.rmtree(tb_dir) self._sw = SummaryWriter(tb_dir) else: self._sw = None self._train_mg = MetersGroup( os.path.join(log_dir, 'train.log'), formating=FORMAT_CONFIG[config]['train'] ) self._eval_mg = MetersGroup( os.path.join(log_dir, 'eval.log'), formating=FORMAT_CONFIG[config]['eval'] ) def _try_sw_log(self, key, value, step): if self._sw is not None: self._sw.add_scalar(key, value, step) def _try_sw_log_image(self, key, image, step): if self._sw is not None: assert image.dim() == 3 grid = torchvision.utils.make_grid(image.unsqueeze(1)) self._sw.add_image(key, grid, step) def _try_sw_log_video(self, key, frames, step): if self._sw is not None: frames = torch.from_numpy(np.array(frames)) frames = frames.unsqueeze(0) self._sw.add_video(key, frames, step, fps=30) def _try_sw_log_histogram(self, key, histogram, step): if self._sw is not None: self._sw.add_histogram(key, histogram, step) def log(self, key, value, step, n=1): assert key.startswith('train') or key.startswith('eval') if type(value) == torch.Tensor: value = value.item() self._try_sw_log(key, value / n, step) mg = self._train_mg if key.startswith('train') else self._eval_mg mg.log(key, value, n) def log_param(self, key, param, step): self.log_histogram(key + '_w', param.weight.data, step) if hasattr(param.weight, 'grad') and param.weight.grad is not None: self.log_histogram(key + '_w_g', param.weight.grad.data, step) if hasattr(param, 'bias'): self.log_histogram(key + '_b', param.bias.data, step) if hasattr(param.bias, 'grad') and param.bias.grad is not None: self.log_histogram(key + '_b_g', param.bias.grad.data, step) def log_image(self, key, image, step): assert key.startswith('train') or key.startswith('eval') self._try_sw_log_image(key, image, step) def log_video(self, key, frames, step): assert key.startswith('train') or key.startswith('eval') self._try_sw_log_video(key, frames, step) def log_histogram(self, key, histogram, step): assert key.startswith('train') or key.startswith('eval') self._try_sw_log_histogram(key, histogram, step) def dump(self, step): self._train_mg.dump(step, 'train') self._eval_mg.dump(step, 'eval')