import torch import torch.nn as nn def tie_weights(src, trg): assert type(src) == type(trg) trg.weight = src.weight trg.bias = src.bias OUT_DIM = {2: 39, 4: 35, 6: 31} class PixelEncoder(nn.Module): """Convolutional encoder of pixels observations.""" def __init__( self, obs_shape, feature_dim, num_layers=2, num_filters=32, stochastic=False ): super().__init__() assert len(obs_shape) == 3 self.feature_dim = feature_dim self.num_layers = num_layers self.stochastic = stochastic self.convs = nn.ModuleList( [nn.Conv2d(obs_shape[0], num_filters, 3, stride=2)] ) for i in range(num_layers - 1): self.convs.append(nn.Conv2d(num_filters, num_filters, 3, stride=1)) out_dim = OUT_DIM[num_layers] self.fc = nn.Linear(num_filters * out_dim * out_dim, self.feature_dim) self.ln = nn.LayerNorm(self.feature_dim) if self.stochastic: self.log_std_min = -10 self.log_std_max = 2 self.fc_log_std = nn.Linear( num_filters * out_dim * out_dim, self.feature_dim ) self.outputs = dict() def reparameterize(self, mu, logstd): std = torch.exp(logstd) eps = torch.randn_like(std) return mu + eps * std def forward_conv(self, obs): obs = obs / 255. self.outputs['obs'] = obs conv = torch.relu(self.convs[0](obs)) self.outputs['conv1'] = conv for i in range(1, self.num_layers): conv = torch.relu(self.convs[i](conv)) self.outputs['conv%s' % (i + 1)] = conv h = conv.view(conv.size(0), -1) return h def forward(self, obs, detach=False): h = self.forward_conv(obs) if detach: h = h.detach() h_fc = self.fc(h) self.outputs['fc'] = h_fc h_norm = self.ln(h_fc) self.outputs['ln'] = h_norm out = torch.tanh(h_norm) if self.stochastic: self.outputs['mu'] = out log_std = torch.tanh(self.fc_log_std(h)) # normalize log_std = self.log_std_min + 0.5 * ( self.log_std_max - self.log_std_min ) * (log_std + 1) out = self.reparameterize(out, log_std) self.outputs['log_std'] = log_std self.outputs['tanh'] = out return out def copy_conv_weights_from(self, source): """Tie convolutional layers""" # only tie conv layers for i in range(self.num_layers): tie_weights(src=source.convs[i], trg=self.convs[i]) def log(self, L, step, log_freq): if step % log_freq != 0: return for k, v in self.outputs.items(): L.log_histogram('train_encoder/%s_hist' % k, v, step) if len(v.shape) > 2: L.log_image('train_encoder/%s_img' % k, v[0], step) for i in range(self.num_layers): L.log_param('train_encoder/conv%s' % (i + 1), self.convs[i], step) L.log_param('train_encoder/fc', self.fc, step) L.log_param('train_encoder/ln', self.ln, step) class StateEncoder(nn.Module): def __init__(self, obs_shape, feature_dim): super().__init__() assert len(obs_shape) == 1 self.feature_dim = feature_dim self.trunk = nn.Sequential( nn.Linear(obs_shape[0], 256), nn.ReLU(), nn.Linear(256, feature_dim), nn.ReLU() ) self.outputs = dict() def forward(self, obs, detach=False): h = self.trunk(obs) if detach: h = h.detach() self.outputs['h'] = h return h def copy_conv_weights_from(self, source): pass def log(self, L, step, log_freq): if step % log_freq != 0: return L.log_param('train_encoder/fc1', self.trunk[0], step) L.log_param('train_encoder/fc2', self.trunk[2], step) for k, v in self.outputs.items(): L.log_histogram('train_encoder/%s_hist' % k, v, step) class IdentityEncoder(nn.Module): def __init__(self, obs_shape, feature_dim): super().__init__() assert len(obs_shape) == 1 self.feature_dim = obs_shape[0] def forward(self, obs, detach=False): return obs def copy_conv_weights_from(self, source): pass def log(self, L, step, log_freq): pass _AVAILABLE_ENCODERS = { 'pixel': PixelEncoder, 'state': StateEncoder, 'identity': IdentityEncoder } def make_encoder( encoder_type, obs_shape, feature_dim, num_layers, num_filters, stochastic ): assert encoder_type in _AVAILABLE_ENCODERS if encoder_type == 'pixel': return _AVAILABLE_ENCODERS[encoder_type]( obs_shape, feature_dim, num_layers, num_filters, stochastic ) return _AVAILABLE_ENCODERS[encoder_type](obs_shape, feature_dim)