# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Planar Manipulator domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from dm_control import mujoco from dm_control.rl import control from local_dm_control_suite import base from local_dm_control_suite import common from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import xml_tools from lxml import etree import numpy as np _CLOSE = .01 # (Meters) Distance below which a thing is considered close. _CONTROL_TIMESTEP = .01 # (Seconds) _TIME_LIMIT = 10 # (Seconds) _P_IN_HAND = .1 # Probabillity of object-in-hand initial state _P_IN_TARGET = .1 # Probabillity of object-in-target initial state _ARM_JOINTS = ['arm_root', 'arm_shoulder', 'arm_elbow', 'arm_wrist', 'finger', 'fingertip', 'thumb', 'thumbtip'] _ALL_PROPS = frozenset(['ball', 'target_ball', 'cup', 'peg', 'target_peg', 'slot']) SUITE = containers.TaggedTasks() def make_model(use_peg, insert): """Returns a tuple containing the model XML string and a dict of assets.""" xml_string = common.read_model('manipulator.xml') parser = etree.XMLParser(remove_blank_text=True) mjcf = etree.XML(xml_string, parser) # Select the desired prop. if use_peg: required_props = ['peg', 'target_peg'] if insert: required_props += ['slot'] else: required_props = ['ball', 'target_ball'] if insert: required_props += ['cup'] # Remove unused props for unused_prop in _ALL_PROPS.difference(required_props): prop = xml_tools.find_element(mjcf, 'body', unused_prop) prop.getparent().remove(prop) return etree.tostring(mjcf, pretty_print=True), common.ASSETS @SUITE.add('benchmarking', 'hard') def bring_ball(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns manipulator bring task with the ball prop.""" use_peg = False insert = False physics = Physics.from_xml_string(*make_model(use_peg, insert)) task = Bring(use_peg=use_peg, insert=insert, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) @SUITE.add('hard') def bring_peg(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns manipulator bring task with the peg prop.""" use_peg = True insert = False physics = Physics.from_xml_string(*make_model(use_peg, insert)) task = Bring(use_peg=use_peg, insert=insert, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) @SUITE.add('hard') def insert_ball(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns manipulator insert task with the ball prop.""" use_peg = False insert = True physics = Physics.from_xml_string(*make_model(use_peg, insert)) task = Bring(use_peg=use_peg, insert=insert, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) @SUITE.add('hard') def insert_peg(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns manipulator insert task with the peg prop.""" use_peg = True insert = True physics = Physics.from_xml_string(*make_model(use_peg, insert)) task = Bring(use_peg=use_peg, insert=insert, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """Physics with additional features for the Planar Manipulator domain.""" def bounded_joint_pos(self, joint_names): """Returns joint positions as (sin, cos) values.""" joint_pos = self.named.data.qpos[joint_names] return np.vstack([np.sin(joint_pos), np.cos(joint_pos)]).T def joint_vel(self, joint_names): """Returns joint velocities.""" return self.named.data.qvel[joint_names] def body_2d_pose(self, body_names, orientation=True): """Returns positions and/or orientations of bodies.""" if not isinstance(body_names, str): body_names = np.array(body_names).reshape(-1, 1) # Broadcast indices. pos = self.named.data.xpos[body_names, ['x', 'z']] if orientation: ori = self.named.data.xquat[body_names, ['qw', 'qy']] return np.hstack([pos, ori]) else: return pos def touch(self): return np.log1p(self.data.sensordata) def site_distance(self, site1, site2): site1_to_site2 = np.diff(self.named.data.site_xpos[[site2, site1]], axis=0) return np.linalg.norm(site1_to_site2) class Bring(base.Task): """A Bring `Task`: bring the prop to the target.""" def __init__(self, use_peg, insert, fully_observable, random=None): """Initialize an instance of the `Bring` task. Args: use_peg: A `bool`, whether to replace the ball prop with the peg prop. insert: A `bool`, whether to insert the prop in a receptacle. fully_observable: A `bool`, whether the observation should contain the position and velocity of the object being manipulated and the target location. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._use_peg = use_peg self._target = 'target_peg' if use_peg else 'target_ball' self._object = 'peg' if self._use_peg else 'ball' self._object_joints = ['_'.join([self._object, dim]) for dim in 'xzy'] self._receptacle = 'slot' if self._use_peg else 'cup' self._insert = insert self._fully_observable = fully_observable super(Bring, self).__init__(random=random) def initialize_episode(self, physics): """Sets the state of the environment at the start of each episode.""" # Local aliases choice = self.random.choice uniform = self.random.uniform model = physics.named.model data = physics.named.data # Find a collision-free random initial configuration. penetrating = True while penetrating: # Randomise angles of arm joints. is_limited = model.jnt_limited[_ARM_JOINTS].astype(np.bool) joint_range = model.jnt_range[_ARM_JOINTS] lower_limits = np.where(is_limited, joint_range[:, 0], -np.pi) upper_limits = np.where(is_limited, joint_range[:, 1], np.pi) angles = uniform(lower_limits, upper_limits) data.qpos[_ARM_JOINTS] = angles # Symmetrize hand. data.qpos['finger'] = data.qpos['thumb'] # Randomise target location. target_x = uniform(-.4, .4) target_z = uniform(.1, .4) if self._insert: target_angle = uniform(-np.pi/3, np.pi/3) model.body_pos[self._receptacle, ['x', 'z']] = target_x, target_z model.body_quat[self._receptacle, ['qw', 'qy']] = [ np.cos(target_angle/2), np.sin(target_angle/2)] else: target_angle = uniform(-np.pi, np.pi) model.body_pos[self._target, ['x', 'z']] = target_x, target_z model.body_quat[self._target, ['qw', 'qy']] = [ np.cos(target_angle/2), np.sin(target_angle/2)] # Randomise object location. object_init_probs = [_P_IN_HAND, _P_IN_TARGET, 1-_P_IN_HAND-_P_IN_TARGET] init_type = choice(['in_hand', 'in_target', 'uniform'], p=object_init_probs) if init_type == 'in_target': object_x = target_x object_z = target_z object_angle = target_angle elif init_type == 'in_hand': physics.after_reset() object_x = data.site_xpos['grasp', 'x'] object_z = data.site_xpos['grasp', 'z'] grasp_direction = data.site_xmat['grasp', ['xx', 'zx']] object_angle = np.pi-np.arctan2(grasp_direction[1], grasp_direction[0]) else: object_x = uniform(-.5, .5) object_z = uniform(0, .7) object_angle = uniform(0, 2*np.pi) data.qvel[self._object + '_x'] = uniform(-5, 5) data.qpos[self._object_joints] = object_x, object_z, object_angle # Check for collisions. physics.after_reset() penetrating = physics.data.ncon > 0 super(Bring, self).initialize_episode(physics) def get_observation(self, physics): """Returns either features or only sensors (to be used with pixels).""" obs = collections.OrderedDict() obs['arm_pos'] = physics.bounded_joint_pos(_ARM_JOINTS) obs['arm_vel'] = physics.joint_vel(_ARM_JOINTS) obs['touch'] = physics.touch() if self._fully_observable: obs['hand_pos'] = physics.body_2d_pose('hand') obs['object_pos'] = physics.body_2d_pose(self._object) obs['object_vel'] = physics.joint_vel(self._object_joints) obs['target_pos'] = physics.body_2d_pose(self._target) return obs def _is_close(self, distance): return rewards.tolerance(distance, (0, _CLOSE), _CLOSE*2) def _peg_reward(self, physics): """Returns a reward for bringing the peg prop to the target.""" grasp = self._is_close(physics.site_distance('peg_grasp', 'grasp')) pinch = self._is_close(physics.site_distance('peg_pinch', 'pinch')) grasping = (grasp + pinch) / 2 bring = self._is_close(physics.site_distance('peg', 'target_peg')) bring_tip = self._is_close(physics.site_distance('target_peg_tip', 'peg_tip')) bringing = (bring + bring_tip) / 2 return max(bringing, grasping/3) def _ball_reward(self, physics): """Returns a reward for bringing the ball prop to the target.""" return self._is_close(physics.site_distance('ball', 'target_ball')) def get_reward(self, physics): """Returns a reward to the agent.""" if self._use_peg: return self._peg_reward(physics) else: return self._ball_reward(physics)