from __future__ import print_function import torch import numpy as np def adjust_learning_rate(epoch, opt, optimizer): """Sets the learning rate to the initial LR decayed by 0.2 every steep step""" steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs)) if steps > 0: new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps) for param_group in optimizer.param_groups: param_group['lr'] = new_lr class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': meter = AverageMeter()