# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Planar Stacker domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from dm_control import mujoco from dm_control.rl import control from local_dm_control_suite import base from local_dm_control_suite import common from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import xml_tools from lxml import etree import numpy as np _CLOSE = .01 # (Meters) Distance below which a thing is considered close. _CONTROL_TIMESTEP = .01 # (Seconds) _TIME_LIMIT = 10 # (Seconds) _ARM_JOINTS = ['arm_root', 'arm_shoulder', 'arm_elbow', 'arm_wrist', 'finger', 'fingertip', 'thumb', 'thumbtip'] SUITE = containers.TaggedTasks() def make_model(n_boxes): """Returns a tuple containing the model XML string and a dict of assets.""" xml_string = common.read_model('stacker.xml') parser = etree.XMLParser(remove_blank_text=True) mjcf = etree.XML(xml_string, parser) # Remove unused boxes for b in range(n_boxes, 4): box = xml_tools.find_element(mjcf, 'body', 'box' + str(b)) box.getparent().remove(box) return etree.tostring(mjcf, pretty_print=True), common.ASSETS @SUITE.add('hard') def stack_2(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns stacker task with 2 boxes.""" n_boxes = 2 physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes)) task = Stack(n_boxes=n_boxes, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) @SUITE.add('hard') def stack_4(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns stacker task with 4 boxes.""" n_boxes = 4 physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes)) task = Stack(n_boxes=n_boxes, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """Physics with additional features for the Planar Manipulator domain.""" def bounded_joint_pos(self, joint_names): """Returns joint positions as (sin, cos) values.""" joint_pos = self.named.data.qpos[joint_names] return np.vstack([np.sin(joint_pos), np.cos(joint_pos)]).T def joint_vel(self, joint_names): """Returns joint velocities.""" return self.named.data.qvel[joint_names] def body_2d_pose(self, body_names, orientation=True): """Returns positions and/or orientations of bodies.""" if not isinstance(body_names, str): body_names = np.array(body_names).reshape(-1, 1) # Broadcast indices. pos = self.named.data.xpos[body_names, ['x', 'z']] if orientation: ori = self.named.data.xquat[body_names, ['qw', 'qy']] return np.hstack([pos, ori]) else: return pos def touch(self): return np.log1p(self.data.sensordata) def site_distance(self, site1, site2): site1_to_site2 = np.diff(self.named.data.site_xpos[[site2, site1]], axis=0) return np.linalg.norm(site1_to_site2) class Stack(base.Task): """A Stack `Task`: stack the boxes.""" def __init__(self, n_boxes, fully_observable, random=None): """Initialize an instance of the `Stack` task. Args: n_boxes: An `int`, number of boxes to stack. fully_observable: A `bool`, whether the observation should contain the positions and velocities of the boxes and the location of the target. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._n_boxes = n_boxes self._box_names = ['box' + str(b) for b in range(n_boxes)] self._box_joint_names = [] for name in self._box_names: for dim in 'xyz': self._box_joint_names.append('_'.join([name, dim])) self._fully_observable = fully_observable super(Stack, self).__init__(random=random) def initialize_episode(self, physics): """Sets the state of the environment at the start of each episode.""" # Local aliases randint = self.random.randint uniform = self.random.uniform model = physics.named.model data = physics.named.data # Find a collision-free random initial configuration. penetrating = True while penetrating: # Randomise angles of arm joints. is_limited = model.jnt_limited[_ARM_JOINTS].astype(np.bool) joint_range = model.jnt_range[_ARM_JOINTS] lower_limits = np.where(is_limited, joint_range[:, 0], -np.pi) upper_limits = np.where(is_limited, joint_range[:, 1], np.pi) angles = uniform(lower_limits, upper_limits) data.qpos[_ARM_JOINTS] = angles # Symmetrize hand. data.qpos['finger'] = data.qpos['thumb'] # Randomise target location. target_height = 2*randint(self._n_boxes) + 1 box_size = model.geom_size['target', 0] model.body_pos['target', 'z'] = box_size * target_height model.body_pos['target', 'x'] = uniform(-.37, .37) # Randomise box locations. for name in self._box_names: data.qpos[name + '_x'] = uniform(.1, .3) data.qpos[name + '_z'] = uniform(0, .7) data.qpos[name + '_y'] = uniform(0, 2*np.pi) # Check for collisions. physics.after_reset() penetrating = physics.data.ncon > 0 super(Stack, self).initialize_episode(physics) def get_observation(self, physics): """Returns either features or only sensors (to be used with pixels).""" obs = collections.OrderedDict() obs['arm_pos'] = physics.bounded_joint_pos(_ARM_JOINTS) obs['arm_vel'] = physics.joint_vel(_ARM_JOINTS) obs['touch'] = physics.touch() if self._fully_observable: obs['hand_pos'] = physics.body_2d_pose('hand') obs['box_pos'] = physics.body_2d_pose(self._box_names) obs['box_vel'] = physics.joint_vel(self._box_joint_names) obs['target_pos'] = physics.body_2d_pose('target', orientation=False) return obs def get_reward(self, physics): """Returns a reward to the agent.""" box_size = physics.named.model.geom_size['target', 0] min_box_to_target_distance = min(physics.site_distance(name, 'target') for name in self._box_names) box_is_close = rewards.tolerance(min_box_to_target_distance, margin=2*box_size) hand_to_target_distance = physics.site_distance('grasp', 'target') hand_is_far = rewards.tolerance(hand_to_target_distance, bounds=(.1, float('inf')), margin=_CLOSE) return box_is_close * hand_is_far