#!/bin/bash CURDIR=`pwd` CODEDIR=`mktemp -d -p ${CURDIR}/tmp` cp ${CURDIR}/*.py ${CODEDIR} cp -r ${CURDIR}/local_dm_control_suite ${CODEDIR}/ cp -r ${CURDIR}/dmc2gym ${CODEDIR}/ cp -r ${CURDIR}/agent ${CODEDIR}/ DOMAIN=${1:-walker} TASK=${2:-walk} ACTION_REPEAT=${3:-2} NOW=${4:-$(date +"%m%d%H%M")} ENCODER_TYPE=pixel DECODER_TYPE=pixel NUM_LAYERS=4 NUM_FILTERS=32 IMG_SOURCE=video AGENT=bisim CDIR=/checkpoint/${USER}/DBC/${DOMAIN}_${TASK} mkdir -p ${CDIR} for TRANSITION_MODEL_TYPE in 'probabilistic'; do for DECODER_TYPE in 'identity'; do for SEED in 1 2 3; do SUBDIR=${AGENT}_transition${TRANSITION_MODEL_TYPE}_nobg/seed_${SEED} SAVEDIR=${CDIR}/${SUBDIR} mkdir -p ${SAVEDIR} JOBNAME=${NOW}_${DOMAIN}_${TASK} SCRIPT=${SAVEDIR}/run.sh SLURM=${SAVEDIR}/run.slrm CODEREF=${SAVEDIR}/code extra="" echo "#!/bin/sh" > ${SCRIPT} echo "#!/bin/sh" > ${SLURM} echo ${CODEDIR} > ${CODEREF} echo "#SBATCH --job-name=${JOBNAME}" >> ${SLURM} echo "#SBATCH --output=${SAVEDIR}/stdout" >> ${SLURM} echo "#SBATCH --error=${SAVEDIR}/stderr" >> ${SLURM} echo "#SBATCH --partition=learnfair" >> ${SLURM} echo "#SBATCH --nodes=1" >> ${SLURM} echo "#SBATCH --time=4000" >> ${SLURM} echo "#SBATCH --ntasks-per-node=1" >> ${SLURM} echo "#SBATCH --signal=USR1" >> ${SLURM} echo "#SBATCH --gres=gpu:volta:1" >> ${SLURM} echo "#SBATCH --mem=500000" >> ${SLURM} echo "#SBATCH -c 1" >> ${SLURM} echo "srun sh ${SCRIPT}" >> ${SLURM} echo "echo \$SLURM_JOB_ID >> ${SAVEDIR}/id" >> ${SCRIPT} echo "nvidia-smi" >> ${SCRIPT} echo "cd ${CODEDIR}" >> ${SCRIPT} echo MUJOCO_GL="osmesa" LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/nvidia-opengl/:$LD_LIBRARY_PATH python train.py \ --domain_name ${DOMAIN} \ --task_name ${TASK} \ --agent ${AGENT} \ --init_steps 1000 \ --num_train_steps 1000000 \ --encoder_type ${ENCODER_TYPE} \ --decoder_type ${DECODER_TYPE} \ --action_repeat ${ACTION_REPEAT} \ --resource_files \'/datasets01/kinetics/070618/400/train/driving_car/*.mp4\' \ --num_layers ${NUM_LAYERS} \ --num_filters ${NUM_FILTERS} \ --transition_model_type ${TRANSITION_MODEL_TYPE} \ --critic_tau 0.01 \ --encoder_tau 0.05 \ --decoder_weight_lambda 0.0000001 \ --hidden_dim 1024 \ --batch_size 128 \ --init_temperature 0.1 \ --alpha_lr 1e-4 \ --alpha_beta 0.5\ --save_model \ --work_dir ${SAVEDIR} \ --seed ${SEED} >> ${SCRIPT} sbatch ${SLURM} done done done