DB/local_dm_control_suite/tests/lqr_test.py
2023-05-29 17:11:26 +02:00

89 lines
2.9 KiB
Python
Executable File

# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests specific to the LQR domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import unittest
# Internal dependencies.
from absl import logging
from absl.testing import absltest
from absl.testing import parameterized
from local_dm_control_suite import lqr
from local_dm_control_suite import lqr_solver
import numpy as np
from six.moves import range
class LqrTest(parameterized.TestCase):
@parameterized.named_parameters(
('lqr_2_1', lqr.lqr_2_1),
('lqr_6_2', lqr.lqr_6_2))
def test_lqr_optimal_policy(self, make_env):
env = make_env()
p, k, beta = lqr_solver.solve(env)
self.assertPolicyisOptimal(env, p, k, beta)
@parameterized.named_parameters(
('lqr_2_1', lqr.lqr_2_1),
('lqr_6_2', lqr.lqr_6_2))
@unittest.skipUnless(
condition=lqr_solver.sp,
reason='scipy is not available, so non-scipy DARE solver is the default.')
def test_lqr_optimal_policy_no_scipy(self, make_env):
env = make_env()
old_sp = lqr_solver.sp
try:
lqr_solver.sp = None # Force the solver to use the non-scipy code path.
p, k, beta = lqr_solver.solve(env)
finally:
lqr_solver.sp = old_sp
self.assertPolicyisOptimal(env, p, k, beta)
def assertPolicyisOptimal(self, env, p, k, beta):
tolerance = 1e-3
n_steps = int(math.ceil(math.log10(tolerance) / math.log10(beta)))
logging.info('%d timesteps for %g convergence.', n_steps, tolerance)
total_loss = 0.0
timestep = env.reset()
initial_state = np.hstack((timestep.observation['position'],
timestep.observation['velocity']))
logging.info('Measuring total cost over %d steps.', n_steps)
for _ in range(n_steps):
x = np.hstack((timestep.observation['position'],
timestep.observation['velocity']))
# u = k*x is the optimal policy
u = k.dot(x)
total_loss += 1 - (timestep.reward or 0.0)
timestep = env.step(u)
logging.info('Analytical expected total cost is .5*x^T*p*x.')
expected_loss = .5 * initial_state.T.dot(p).dot(initial_state)
logging.info('Comparing measured and predicted costs.')
np.testing.assert_allclose(expected_loss, total_loss, rtol=tolerance)
if __name__ == '__main__':
absltest.main()