DB/local_dm_control_suite/reacher.py

117 lines
4.3 KiB
Python
Raw Normal View History

2023-05-29 15:11:26 +00:00
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Reacher domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from dm_control import mujoco
from dm_control.rl import control
from local_dm_control_suite import base
from local_dm_control_suite import common
from dm_control.suite.utils import randomizers
from dm_control.utils import containers
from dm_control.utils import rewards
import numpy as np
SUITE = containers.TaggedTasks()
_DEFAULT_TIME_LIMIT = 20
_BIG_TARGET = .05
_SMALL_TARGET = .015
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
return common.read_model('reacher.xml'), common.ASSETS
@SUITE.add('benchmarking', 'easy')
def easy(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns reacher with sparse reward with 5e-2 tol and randomized target."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Reacher(target_size=_BIG_TARGET, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add('benchmarking')
def hard(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns reacher with sparse reward with 1e-2 tol and randomized target."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Reacher(target_size=_SMALL_TARGET, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the Reacher domain."""
def finger_to_target(self):
"""Returns the vector from target to finger in global coordinates."""
return (self.named.data.geom_xpos['target', :2] -
self.named.data.geom_xpos['finger', :2])
def finger_to_target_dist(self):
"""Returns the signed distance between the finger and target surface."""
return np.linalg.norm(self.finger_to_target())
class Reacher(base.Task):
"""A reacher `Task` to reach the target."""
def __init__(self, target_size, random=None):
"""Initialize an instance of `Reacher`.
Args:
target_size: A `float`, tolerance to determine whether finger reached the
target.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._target_size = target_size
super(Reacher, self).__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
physics.named.model.geom_size['target', 0] = self._target_size
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
# Randomize target position
angle = self.random.uniform(0, 2 * np.pi)
radius = self.random.uniform(.05, .20)
physics.named.model.geom_pos['target', 'x'] = radius * np.sin(angle)
physics.named.model.geom_pos['target', 'y'] = radius * np.cos(angle)
super(Reacher, self).initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation of the state and the target position."""
obs = collections.OrderedDict()
obs['position'] = physics.position()
obs['to_target'] = physics.finger_to_target()
obs['velocity'] = physics.velocity()
return obs
def get_reward(self, physics):
radii = physics.named.model.geom_size[['target', 'finger'], 0].sum()
return rewards.tolerance(physics.finger_to_target_dist(), (0, radii))