DB/vec_env.py

223 lines
6.8 KiB
Python
Raw Permalink Normal View History

2021-10-09 00:33:47 +00:00
"""
An interface for asynchronous vectorized environments.
"""
import ctypes
from abc import ABC, abstractmethod
from multiprocessing import Pipe, Array, Process
import gym
import numpy as np
from baselines import logger
_NP_TO_CT = {np.float32: ctypes.c_float,
np.int32: ctypes.c_int32,
np.int8: ctypes.c_int8,
np.uint8: ctypes.c_char,
np.bool: ctypes.c_bool}
_CT_TO_NP = {v: k for k, v in _NP_TO_CT.items()}
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all the environments and return an array of
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
@abstractmethod
def close(self):
"""
Clean up the environments' resources.
"""
pass
def step(self, actions):
self.step_async(actions)
return self.step_wait()
def render(self):
logger.warn('Render not defined for %s' % self)
class ShmemVecEnv(VecEnv):
"""
An AsyncEnv that uses multiprocessing to run multiple
environments in parallel.
"""
def __init__(self, env_fns, spaces=None):
"""
If you don't specify observation_space, we'll have to create a dummy
environment to get it.
"""
if spaces:
observation_space, action_space = spaces
else:
logger.log('Creating dummy env object to get spaces')
with logger.scoped_configure(format_strs=[]):
dummy = env_fns[0]()
observation_space, action_space = dummy.observation_space, dummy.action_space
dummy.close()
del dummy
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
obs_spaces = observation_space.spaces if isinstance(self.observation_space, gym.spaces.Tuple) else (
self.observation_space,)
self.obs_bufs = [tuple(Array(_NP_TO_CT[s.dtype.type], int(np.prod(s.shape))) for s in obs_spaces) for _ in
env_fns]
self.obs_shapes = [s.shape for s in obs_spaces]
self.obs_dtypes = [s.dtype for s in obs_spaces]
self.parent_pipes = []
self.procs = []
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = Pipe()
proc = Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
self.waiting_step = False
def reset(self):
if self.waiting_step:
logger.warn('Called reset() while waiting for the step to complete')
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('reset', None))
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
def step_async(self, actions):
assert len(actions) == len(self.parent_pipes)
for pipe, act in zip(self.parent_pipes, actions):
pipe.send(('step', act))
def step_wait(self):
outs = [pipe.recv() for pipe in self.parent_pipes]
obs, rews, dones, infos = zip(*outs)
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
def close(self):
if self.waiting_step:
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('close', None))
for pipe in self.parent_pipes:
pipe.recv()
pipe.close()
for proc in self.procs:
proc.join()
def _decode_obses(self, obs):
"""
Turn the observation responses into a single numpy
array, possibly via shared memory.
"""
obs = []
for i, shape in enumerate(self.obs_shapes):
bufs = [b[i] for b in self.obs_bufs]
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[i]).reshape(shape) for b in bufs]
obs.append(np.array(o))
return tuple(obs) if len(obs) > 1 else obs[0]
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_buf, obs_shape):
"""
Control a single environment instance using IPC and
shared memory.
If obs_buf is not None, it is a shared-memory buffer
for communicating observations.
"""
def _write_obs(obs):
if not isinstance(obs, tuple):
obs = (obs,)
for o, b, s in zip(obs, obs_buf, obs_shape):
dst = b.get_obj()
dst_np = np.frombuffer(dst, dtype=_CT_TO_NP[dst._type_]).reshape(s) # pylint: disable=W0212
np.copyto(dst_np, o)
env = env_fn_wrapper.x()
parent_pipe.close()
try:
while True:
cmd, data = pipe.recv()
if cmd == 'reset':
pipe.send(_write_obs(env.reset()))
elif cmd == 'step':
obs, reward, done, info = env.step(data)
if done:
obs = env.reset()
pipe.send((_write_obs(obs), reward, done, info))
elif cmd == 'close':
pipe.send(None)
break
else:
raise RuntimeError('Got unrecognized cmd %s' % cmd)
finally:
env.close()