DB/local_dm_control_suite/point_mass.py

131 lines
4.7 KiB
Python
Raw Permalink Normal View History

2023-05-29 15:11:26 +00:00
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Point-mass domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from dm_control import mujoco
from dm_control.rl import control
from local_dm_control_suite import base
from local_dm_control_suite import common
from dm_control.suite.utils import randomizers
from dm_control.utils import containers
from dm_control.utils import rewards
import numpy as np
_DEFAULT_TIME_LIMIT = 20
SUITE = containers.TaggedTasks()
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
return common.read_model('point_mass.xml'), common.ASSETS
@SUITE.add('benchmarking', 'easy')
def easy(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the easy point_mass task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = PointMass(randomize_gains=False, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
@SUITE.add()
def hard(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the hard point_mass task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = PointMass(randomize_gains=True, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, **environment_kwargs)
class Physics(mujoco.Physics):
"""physics for the point_mass domain."""
def mass_to_target(self):
"""Returns the vector from mass to target in global coordinate."""
return (self.named.data.geom_xpos['target'] -
self.named.data.geom_xpos['pointmass'])
def mass_to_target_dist(self):
"""Returns the distance from mass to the target."""
return np.linalg.norm(self.mass_to_target())
class PointMass(base.Task):
"""A point_mass `Task` to reach target with smooth reward."""
def __init__(self, randomize_gains, random=None):
"""Initialize an instance of `PointMass`.
Args:
randomize_gains: A `bool`, whether to randomize the actuator gains.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._randomize_gains = randomize_gains
super(PointMass, self).__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
If _randomize_gains is True, the relationship between the controls and
the joints is randomized, so that each control actuates a random linear
combination of joints.
Args:
physics: An instance of `mujoco.Physics`.
"""
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
if self._randomize_gains:
dir1 = self.random.randn(2)
dir1 /= np.linalg.norm(dir1)
# Find another actuation direction that is not 'too parallel' to dir1.
parallel = True
while parallel:
dir2 = self.random.randn(2)
dir2 /= np.linalg.norm(dir2)
parallel = abs(np.dot(dir1, dir2)) > 0.9
physics.model.wrap_prm[[0, 1]] = dir1
physics.model.wrap_prm[[2, 3]] = dir2
super(PointMass, self).initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation of the state."""
obs = collections.OrderedDict()
obs['position'] = physics.position()
obs['velocity'] = physics.velocity()
return obs
def get_reward(self, physics):
"""Returns a reward to the agent."""
target_size = physics.named.model.geom_size['target', 0]
near_target = rewards.tolerance(physics.mass_to_target_dist(),
bounds=(0, target_size), margin=target_size)
control_reward = rewards.tolerance(physics.control(), margin=1,
value_at_margin=0,
sigmoid='quadratic').mean()
small_control = (control_reward + 4) / 5
return near_target * small_control