From 2d92c52e409a94d6a38e943568f73e93cd577a4e Mon Sep 17 00:00:00 2001 From: Tanja Sukal Date: Tue, 19 Sep 2023 10:36:56 +0000 Subject: [PATCH] Delete 'Color_Sorting/Test_Python_Obstical_sorter.py' --- Color_Sorting/Test_Python_Obstical_sorter.py | 187 ------------------- 1 file changed, 187 deletions(-) delete mode 100644 Color_Sorting/Test_Python_Obstical_sorter.py diff --git a/Color_Sorting/Test_Python_Obstical_sorter.py b/Color_Sorting/Test_Python_Obstical_sorter.py deleted file mode 100644 index 5daf8d3..0000000 --- a/Color_Sorting/Test_Python_Obstical_sorter.py +++ /dev/null @@ -1,187 +0,0 @@ -#!/usr/bin/env python3 - -from time import sleep - -from ev3dev2.motor import Motor, MoveTank, SpeedPercent, OUTPUT_A, OUTPUT_B, OUTPUT_C, OUTPUT_D -from ev3dev2.sensor import INPUT_2,INPUT_3,INPUT_4 -from ev3dev2.sensor.lego import ColorSensor, UltrasonicSensor, GyroSensor -from ev3dev2.led import Leds -from pixycamev3.pixy2 import Pixy2 - -# Define all inputs and outputs of the Robot -# Sensors are inputs -us = UltrasonicSensor(INPUT_2) -cs = ColorSensor(INPUT_3) -gyro = GyroSensor(INPUT_4) -gyro.reset() -pixy2 = Pixy2(port=1, i2c_address=0x54) -# Motors are outputs -m_left = Motor(OUTPUT_A) -m_right = Motor(OUTPUT_D) -tank = MoveTank(OUTPUT_A, OUTPUT_D) -leds = Leds() - -# The motor is initialized to run counter-clockwise (gegen den Uhrzeigersinn) -m_right.polarity = 'inversed' # use 'normal' to initialize it to run clockwise (im Uhrzeigersinn) -m_left.polarity = 'inversed' - -# Defined inputs for the given experiment / enviroment -orange = 1 # Signatur of orange dice -green = 2 # Signatur of green dice -fast = 30 # driving speed -slow = 10 # searching speed - -# inital state defined -state = 1 # Initiate search state for beginning -last_state = 1 -i = 0 # conrol variable - - -# Define state search -def search (): - global state - global last_state - global gyro - j=0 # control variable - leds.set_color("LEFT", "BLACK") - leds.set_color("RIGHT", "BLACK") - # turn slowly aroud on place until blocks are found - m_right.on(SpeedPercent(-slow)) - m_left.on(SpeedPercent(slow)) - # search for blocks - nr_orange, o_block = pixy2.get_blocks(orange, 2) - nr_green, g_block = pixy2.get_blocks(green, 2) - if cs.reflected_light_intensity < 15: # if outline is reached change state to edge - last_state = state - state = 5 - elif us.distance_centimeters < 10: - last_state = state - state = 3 - elif nr_orange > 0: # when orange block is found then change to get - last_state = state - state = 2 - elif nr_green > 0: # when green block is found then change to avoid - last_state = state - state = 4 - elif gyro.angle > 720: # when the robot does not find a block drive a little bit forward - while cs.reflected_light_intensity > 8 and j <= 5: - tank.on(fast,fast) - sleep(0.2) - j+=1 - gyro.reset() - j=0 - - -def get (): # Define state get - global state - global last_state - global i - # block is found drive twoards it - leds.set_color("LEFT", "ORANGE") - leds.set_color("RIGHT", "BLACK") - tank.on(fast,fast) - # find the orange block again - nr_orange, o_block = pixy2.get_blocks(orange, 2) - if nr_orange > 0: # get where in the field of vision the block lays - x = o_block[0].x_center - i= 0 - else: - x = 130 - i +=1 - if 4 <= i < 6: # when the block is not found, virtually place the robot in the middle of the vision - tank.on_for_seconds(-fast,-fast,0.4) # drive backwards if block is not found 3 times in a row - elif 6 == i: - m_right.on(SpeedPercent(slow)) - m_left.on(SpeedPercent(-slow)) - sleep(0.2) - elif i > 6: - i = 0 - state = 1 - gyro.reset() - - # Decide what robot should do with the gathered information - if us.distance_centimeters <= 12: - last_state = state - state = 3 # when block distance is small switch state - else: - # when block on left side drive more left - if x < 110: # turn left - m_right.on(SpeedPercent(slow)) - m_left.on(SpeedPercent(-slow)) - # when block on right side drive more right - elif x > 150: # turn right - m_right.on(SpeedPercent(-slow)) - m_left.on(SpeedPercent(slow)) - if cs.reflected_light_intensity < 15: # When colorsensor detects line then switch state - last_state = state - state = 5 - - -def sort (): # Define state sort - global state - global last_state - leds.set_color("LEFT", "ORANGE") - leds.set_color("RIGHT", "ORANGE") - m_right.on(SpeedPercent(fast)) - m_left.on(SpeedPercent(fast)) - nr_green, g_block = pixy2.get_blocks(green, 2) - # block is caught, drive to the edge - if cs.reflected_light_intensity < 15: - last_state = state - state = 5 - elif nr_green > 0: - last_state = state - state = 4 - - -def avoid (): - global state - global last_state - leds.set_color("LEFT", "GREEN") - leds.set_color("RIGHT", "GREEN") - # found block but do not want to kick it out - nr_green, g_block = pixy2.get_blocks(green, 2) - if nr_green > 0: - x = g_block[0].x_center - else: - x = 130 - # Drive around it - if 100 < x < 150: - m_right.on(SpeedPercent(-fast)) - m_left.on(SpeedPercent(fast)) - sleep(0.2) - state = last_state - last_state = 4 - - -def edge (): - global state - global last_state - global gyro - leds.set_color("LEFT", "BLACK") - leds.set_color("RIGHT", "RED") - gyro.reset() - tank.on_for_rotations(-fast,-fast,2) # drive backwards - while gyro.angle < 100: #turn around for 180 degrees - m_right.on(SpeedPercent(-fast)) - m_left.on(SpeedPercent(fast)) - state = 1 - # reset gyro sensor - gyro.reset() - - - -print('start') -while True: # endless-loop for switching states - - state_switch= { # dictionary of the states - 1: search, - 2: get, - 3: sort, - 4: avoid, - 5: edge - } - - func = state_switch.get(state) # function that gets state - func() # activate current state - sleep(0.3) \ No newline at end of file