// Copyright (c) 2021 Franka Emika GmbH // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include MotionGenerator::MotionGenerator(double speed_factor, const Vector7d& q_start, const Vector7d& q_goal) : q_start_(q_start) { assert(speed_factor > 0); assert(speed_factor <= 1); delta_q_ = q_goal - q_start; dq_max_ *= speed_factor; ddq_max_start_ *= speed_factor; ddq_max_goal_ *= speed_factor; calculateSynchronizedValues(); } bool MotionGenerator::calculateDesiredValues(double time, Vector7d* delta_q_d) const { Vector7i sign_delta_q; sign_delta_q << delta_q_.cwiseSign().cast(); Vector7d t_d = t_2_sync_ - t_1_sync_; Vector7d delta_t_2_sync = t_f_sync_ - t_2_sync_; std::array joint_motion_finished{}; for (auto i = 0; i < kJoints; i++) { if (std::abs(delta_q_[i]) < kDeltaQMotionFinished) { (*delta_q_d)[i] = 0; joint_motion_finished.at(i) = true; } else { if (time < t_1_sync_[i]) { (*delta_q_d)[i] = -1.0 / std::pow(t_1_sync_[i], 3.0) * dq_max_sync_[i] * sign_delta_q[i] * (0.5 * time - t_1_sync_[i]) * std::pow(time, 3.0); } else if (time >= t_1_sync_[i] && time < t_2_sync_[i]) { (*delta_q_d)[i] = q_1_[i] + (time - t_1_sync_[i]) * dq_max_sync_[i] * sign_delta_q[i]; } else if (time >= t_2_sync_[i] && time < t_f_sync_[i]) { (*delta_q_d)[i] = delta_q_[i] + 0.5 * (1.0 / std::pow(delta_t_2_sync[i], 3.0) * (time - t_1_sync_[i] - 2.0 * delta_t_2_sync[i] - t_d[i]) * std::pow((time - t_1_sync_[i] - t_d[i]), 3.0) + (2.0 * time - 2.0 * t_1_sync_[i] - delta_t_2_sync[i] - 2.0 * t_d[i])) * dq_max_sync_[i] * sign_delta_q[i]; } else { (*delta_q_d)[i] = delta_q_[i]; joint_motion_finished.at(i) = true; } } } return std::all_of(joint_motion_finished.cbegin(), joint_motion_finished.cend(), [](bool each_joint_finished) { return each_joint_finished; }); } void MotionGenerator::calculateSynchronizedValues() { Vector7d dq_max_reach(dq_max_); Vector7d t_f = Vector7d::Zero(); Vector7d delta_t_2 = Vector7d::Zero(); Vector7d t_1 = Vector7d::Zero(); Vector7d delta_t_2_sync = Vector7d::Zero(); Vector7i sign_delta_q; sign_delta_q << delta_q_.cwiseSign().cast(); for (auto i = 0; i < kJoints; i++) { if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) { if (std::abs(delta_q_[i]) < (3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_start_[i]) + 3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_goal_[i]))) { dq_max_reach[i] = std::sqrt(4.0 / 3.0 * delta_q_[i] * sign_delta_q[i] * (ddq_max_start_[i] * ddq_max_goal_[i]) / (ddq_max_start_[i] + ddq_max_goal_[i])); } t_1[i] = 1.5 * dq_max_reach[i] / ddq_max_start_[i]; delta_t_2[i] = 1.5 * dq_max_reach[i] / ddq_max_goal_[i]; t_f[i] = t_1[i] / 2.0 + delta_t_2[i] / 2.0 + std::abs(delta_q_[i]) / dq_max_reach[i]; } } double max_t_f = t_f.maxCoeff(); for (auto i = 0; i < kJoints; i++) { if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) { double param_a = 1.5 / 2.0 * (ddq_max_goal_[i] + ddq_max_start_[i]); double param_b = -1.0 * max_t_f * ddq_max_goal_[i] * ddq_max_start_[i]; double param_c = std::abs(delta_q_[i]) * ddq_max_goal_[i] * ddq_max_start_[i]; double delta = param_b * param_b - 4.0 * param_a * param_c; if (delta < 0.0) { delta = 0.0; } dq_max_sync_[i] = (-1.0 * param_b - std::sqrt(delta)) / (2.0 * param_a); t_1_sync_[i] = 1.5 * dq_max_sync_[i] / ddq_max_start_[i]; delta_t_2_sync[i] = 1.5 * dq_max_sync_[i] / ddq_max_goal_[i]; t_f_sync_[i] = (t_1_sync_)[i] / 2.0 + delta_t_2_sync[i] / 2.0 + std::abs(delta_q_[i] / dq_max_sync_[i]); t_2_sync_[i] = (t_f_sync_)[i] - delta_t_2_sync[i]; q_1_[i] = (dq_max_sync_)[i] * sign_delta_q[i] * (0.5 * (t_1_sync_)[i]); } } } std::pair MotionGenerator::getDesiredJointPositions( const rclcpp::Duration& trajectory_time) { time_ = trajectory_time.seconds(); Vector7d delta_q_d; bool motion_finished = calculateDesiredValues(time_, &delta_q_d); std::array joint_positions{}; Eigen::VectorXd::Map(joint_positions.data(), kJoints) = (q_start_ + delta_q_d); return std::make_pair(q_start_ + delta_q_d, motion_finished); }