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Preface

This book presents fundamental theories, algorithms and concepts of probabilistic

machine learning techniques. It is written for experienced undergraduate or first semester

graduate students. The content will be expanded during the lecture series of Univ.-Prof.

Dr. Elmar Rueckert.
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tion t6 Probability Theory, Linear Probabilistic Regression, Nonlinear Probabilistic Regression,

Probabilistic Inference, and Probabilistic Optimization.
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section. The chapter concludes with a series of mathematical or programming Exercises.
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1.1 Types of Machine Learning 2In this section, machine learning fundamentals are discussed. In Figure 1.1,

the input/output relations and the usage of teacher signals for training

the models is contrasted for these three fundamental learning types.

1.1 Types of Machine Learning

Three main types of learning can be differentiated by inspecting how the

model parameters are updated, and how model inputs and outputs are

used.

Figure 1.1: The figure shows the three

main types of machine learning ap-

proaches.

Supervised Learning

In supervised learning, a target value or output sample exists for each

input sample. This type of learning is also called predictive learning.

Classical regression and classification techniques fall into that category.

For concrete examples, please read the chapter on linear regression

(Chapter 3).

The key idea of supervised learning is to minimize an objective, e.g.,

the Euclidean distance between the inputs and given targets.

Unsupervised Learning

In unsupervised learning, only input samples are given and the goal

is to analyze or compress the data. This type of learning is also called

descriptive learning.

Typical examples of unsupervised learning are clustering algorithms such

the k-means algorithm. Other typical examples of unsupervised learning

approaches are feature learning algorithms such as autoencoder. An
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[1]: Goodfellow et al. (2016), Deep Learn-
ing

[2]: Sutton et al. (2018), Reinforcement
learning: An introduction

autoencoder is a neural network that aims at reproducing the inputs. The

network consists of an encoder and decoder. The encoder compresses

the data, which corresponds to feature learning. The decoder tries to

reproduce the (uncompressed/original) inputs based on the output of

the encoder (the typically low-dimensional feature representation). For

more details, please have a look at [1].

The key idea of unsupervised learning is to extract representative

features, compress the data or identify similarities.

Reinforcement Learning

Reinforcement Learning is optimizing a model based on a sparse reward

signal. Unlike in supervised learning (where the teaching signal is given

for every input), such a sparse reward is only given occasionally. The

sparse reward signal is used to interpret a sequence of past actions of a

behaving agent.

Reinforcement learning is also called trial and error or behavorial
learning. An agent perceives the world, computes an action based on its

learned policy (the model) and might receive a reward. The challenges

lie in the perception of the world, the modeling of the policy and the

sparse reward. For more details, we refer to the book by Sutton and Barto

on reinforcement learning [2].

The key idea of reinforcement learning is to maximize a cumulative

reward.



Introduction to Probability
Theory 2

2.1 Frequentist or Bayesian
View . . . . . . . . . . . . . . . 4

2.2 Definition of Random
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2.3 Discrete Random Variables 5
2.4 Fundamental Rules . . . . . 5
2.5 Fundamental Discrete

Distributions . . . . . . . . . 6
2.6 Fundamental Continuous

Distributions . . . . . . . . . 8
2.7 Information Theory . . . . . 9
2.8 Exercises . . . . . . . . . . . . 10

In this chapter we will discuss basic concepts of probability theory and

how they can be applied. We start with the concept of discrete random

variables and their fundamental rules.

2.1 Frequentist or Bayesian View

When talking about probabilities, two different and often competing

perspectives exist. First, in the Frequentist interpretation, a probability

denotes the number of occurrences of certain events, e.g., if we flip a coin

many times we expect it to land heads or tails about half of the time.

In the Bayesian interpretation we quantify the uncertainty of events

happening. For example in the above coin flipping experiment, we

believe that the coin is equally likely to land heads or tails.

It is important to understand the differences of these two conceptual

views. Throughout this book we will apply the Bayesian interpretation of

probabilities as it can be applied to problem instances with rare events,

allows to integrate prior information in a principled way and can be used

to solve complex inference tasks.

2.2 Definition of Random Variables

Probability space. Let Ω define a set of possible states of the world.

For example Ω = {heads, tails} or Ω = {𝐻,𝑇} of a coin.

An event is a subspace of Ω. For example, consider tossing two

coins and you are interested in the event that both land on heads, i.e.,

𝐴 = {𝐻𝐻}.

Random variables. Assume a function that maps from Ω to real

numbers ℝ. We can formalize this mapping mathematically for a random

variable 𝑋 with 𝑋 : Ω → ℝ. Such a function is called random variable
or variable.

Definition 2.2.1 A random variable is a function that maps from Ω to real
numbers ℝ, i.e., 𝑋 : Ω → ℝ.

Indicator function. Using the above definitions we can formalize

experimental conditions. For example, let 𝑥 denote a value of 𝑋 like

that a coin lands on heads. Further, let {𝑋 = 𝑥} denote the event of this

scenario. This event is defined as {𝑤 ∈ Ω : 𝑋(𝑤) = 𝑥}, where 𝑤 denotes

the individual or trial in our experiment. Moreover, the set of all possible

values of the random variable (RV) 𝑋 is denoted by Ω𝑋 .
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[3]: Ruskey et al. (1997), ‘A survey of Venn

diagrams’

2.3 Discrete Random Variables

Let Xdenote a finite or countable infinite set of discrete random values.

We define the probablity 𝑝(𝑥) as a short hand for the probability that the

random variable 𝑋 takes the value 𝑥, i.e., 𝑝(𝑋 = 𝑥). Here 𝑝(𝑥) denotes

the probability mass function (pmf) that satisfies the properties,

0 ≤ 𝑝(𝑥) ≤ 1 and

∑
𝑥 𝑖𝑛X

𝑝(𝑥) = 1. (2.1)

Binary Random Variables

A binary random variable takes the values of either ’true’ or ’false’. We

denote binary random variables by 𝑝(𝐴) which is the short hand for

𝑝(𝐴 = 1). Contrary, 𝑝(𝐴) means that event 𝐴 will be ’false’, or 𝑝(𝐴 = 0).
From Equation 2.1 we can infer 𝑝(𝐴) = 1 − 𝑝(𝐴).

2.4 Fundamental Rules

In the following, basic fundamental rules for calculations with probability

distributions are discussed. A common visual representation for these

rules are Venn diagrams [3]. An example of fruit preferences of 40 children

is shown in Figure 2.1.

Compliment of an event. Let 𝑝(𝐴𝑐) define the compliment of 𝑝(𝐴)
with respect to the probability space Ω. Thus 𝐴𝑐 is the event of all states

not in 𝐴. Note that for binary random variables 𝑝(𝐴) is used as notation.

Sometimes the notation 𝑃(𝐴′) is used in related literature.

The Union of two events is defined as 𝑝(𝐴∪𝐵) = 𝑝(𝐴)+𝑝(𝐵)−𝑝(𝐴∩𝐵).
If both random variables are mutually exclusive, i.e., when both events

cannot occur at the same time, then the union of two events simplifies to

𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵).

Figure 2.1: The figure shows an example

of a Venn Diagram representing fruit

preferences of 40 children. The Union of

children that like apples (A) or bananas

(B) is 𝑝(𝐴 ∪ 𝐵) = 33/40.

The Intersection of two events is defined as 𝑝(𝐴 ∩ 𝐵) and denotes

events where both random variables take the same value. For example,

when tossing two coins and both land on heads.

The Joint probability of two events as

𝑝(𝐴, 𝐵) = 𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵).

It is also called the product rule and is of fundamental importance to

understand conditional probabilities and the Bayes rule which we will

introduce next.
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The Marginal (distribution) is defined as

𝑝(𝐴) =
∑
𝑏

𝑝(𝐴|𝐵 = 𝑏)𝑝(𝐵 = 𝑏).

We are summing over all possible values of the random variable 𝐵.

The Conditional probability is defined as 𝑝(𝐴|𝐵) and can be computed

from the joint probability 𝑝(𝐴|𝐵) = 𝑝(𝐴, 𝐵)/𝑝(𝐵).

The Bayes Rule From 𝑝(𝐴, 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴), the Bayes

rule can be derived, i.e.,

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)
𝑝(𝐵) . (2.2)

Often the denominator is expressed through applying the Marginal rule
above which leads to

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)∑
𝑎 𝑝(𝐵|𝐴 = 𝑎)𝑝(𝐴 = 𝑎) . (2.3)

Remark 2.4.1 In the literature, the term likelihood denotes the term

𝑝(𝐵|𝐴) and often refers to the probability that our observed data 𝐵

could have been generated by some model 𝐴. The result of the Bayes

rule is called posterior and can be used to answer the most important

question of how well our model for 𝐴 explains the observed data 𝐵.

Note that through applying the Bayes rule we can answer this question in

an elegant way. However, we assume that our model can generate artificial

data, thus we assume a generative model. Moreover, we assume that we

know the prior distribution 𝑝(𝐴), which is one of the most significant

points of critics of the frequentist community.

2.5 Fundamental Discrete Distributions

In this section, we discuss some fundamental distributions that are

defined on discrete state spaces, both finite and countable finite.

Bernoulli and Binomial distributions

In Section 2.3, we introduced a binary random variable 𝑝(𝐴) that takes

the values of either ’true’ (𝐴 = 1) or false (𝐴 = 0). To model this RV

as parameterized distribution with the parameter 𝜇, we denote the

probability of 𝐴 = 1 by

𝑝(𝐴 = 1|𝜇) = 𝜇,
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where 0 ≤ 𝜇 ≤ 1. From Equation 2.1 it follows that 𝑝(𝐴 = 0|𝜇) = 1 − 𝜇.

The probability distribution over 𝐴 can be written as parameterized

distribution as

Bern(𝐴|𝜇) = 𝜇𝐴 (1 − 𝜇)(1−𝐴). (2.4)

This distribution is known as Bernoulli distribution. For a fair coin,

𝜇 = 0.5.

Now suppose we toss such a coin 𝑛 times. Typically, we are interested in

how often a particular event occurs, e.g., 𝑘 times the coin lands on heads.

The total number of possible combinations of choosing 𝑘 items from 𝑛

can be computes as (
𝑛

𝑘

)
:=

𝑛!

(𝑛 − 𝑘)! 𝑘! ,

which is the definition (note the := symbol) of the biominal coefficient.
Using the definition of the probability of 𝐴 = 1 in Equation 2.4, we can

derive the parametric distribution of observing 𝑘 times heads of tossing

a coin 𝑛 times,

Bin(𝑘 |𝑛, 𝜇) :=

(
𝑛

𝑘

)
𝜇𝑘 (1 − 𝜇)(𝑛−𝑘).

Remark 2.5.1 This parametric distribution is known as the Binomial
distribution. Note that the mean of this distribution is 𝑛𝜇 and the

variance is given by 𝑛𝜇(1 − 𝜇).

Multinomial distributions

Let 𝐾 denote dimensionality of the probability space Ω (defined in

Section 2.2). For binary random variables 𝐾 = 2. For discrete random

variables with more than two possible states or categories (𝐾 > 2), we

define the parameterized multinomial distribution with

Mu(𝒙 |𝑛, 𝝁) :=

(
𝑛

𝑥1...𝑥𝐾

)
𝐾∏
𝑗=1

𝜇
𝑥 𝑗

𝑗
.

The multinomial coefficient denotes the number of ways of partitioning

𝑛 objects into 𝐾 groups of sizes 𝑥1 , ..., 𝑥𝐾 and is given by(
𝑛

𝑥1...𝑥𝐾

)
:=

𝑛!

𝑥1! 𝑥2! ...𝑥𝐾 !

.

Note that the sum of the group sizes has to be equal to the total number

of objects in the set, i.e.,

∑𝐾
𝑗=1
𝑥 𝑗 = 𝑛.

Multinoulli distributions model the special case where 𝑛 = 1. In this case,

the vector 𝒙 is a binary vector where only one of its elements is equal to

one and all others are zero. Such an encoding is known as 1-of-K encoding
or one-hot encoding. Suppose rolling a 𝐾 = 6 sided dice. Potential states
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are 𝒙 = [1, 0, 0, 0, 0, 0], 𝒙 = [0, 0, 1, 0, 0, 0] or 𝒙 = [0, 0, 0, 0, 0, 1]. The

Multinoulli distribution is defined as

Mu(𝒙 |1, 𝝁) :=

𝐾∏
𝑗=1

𝜇
𝑥 𝑗

𝑗
,

with the constraints

∑𝐾
𝑗=1

𝜇𝑗 = 1 and 𝜇𝑗 ≥ 0 ∀𝑗 ∈ [0, 𝐾].

2.6 Fundamental Continuous Distributions

Many real-world problems require continuous variables for modeling.

In this section, we will only briefly review the distributions that will be

used in the subsequent chapters. For more details and other continuous

distributions, we recommend reading Chapter II on Probability Distributions
in the book of Christopher M. Bishop [4] or Chapter II on Probability in the

book of Kevin P. Murphy [5].

Beta distributions

The Beta distribution has support over the interval [0, 1] and is defined

as

Beta(𝑥 |𝑎, 𝑏) := 𝐵(𝑎, 𝑏) 𝑥(𝑎−1) (1 − 𝑥)(𝑏−1) , (2.5)

where 𝑎, 𝑏 and 𝑥 are scalars and 𝐵(𝑎, 𝑏) denotes the Beta function

B(𝑎, 𝑏) :=
Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏) .

The beta function makes use of the gamma function, which is defined as

the integral over Γ(𝑦) =
∫ ∞

0

𝑢(𝑦−1)
exp

−𝑢 𝑑𝑢.

Figure 2.2: The figure shows three exam-

ple PDFs of the beta distribution with

different parameters 𝑎 and 𝑏.

Gaussian or Normal distributions

The Gaussian distribution is also known as normal distribution and is

defined for scalar variables as

N(𝑥 |𝜇, 𝜎) :=
1

(2𝜋𝜎2)1/2

exp
{− 1

2𝜎2
(𝑥−𝜇)2}

.

The variable 𝜇 denotes the mean of the distribution and 𝜎 the variance.

Note that 𝜎−1
denotes the precision and is often used to simply the

calculus with Gaussian distributions.
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Multivariate Gaussians and Conditional distributions

For vectors 𝒙 ∈ ℝ𝐷𝑥1
, the Gaussian distribution is defined as

N(𝒙 |𝝁,𝚺) :=
1

(2𝜋)𝐷/2 |Σ|1/2

exp
{− 1

2
(𝒙−𝝁)𝑇 𝚺−1 (𝒙−𝝁)} , (2.6)

where |Σ| denotes the determinant of the covariance matrix 𝚺 ∈ ℝ𝐷𝑥𝐷
.

In Section 2.4, we defined the rule for conditional probabilities. This

fundamental rule is an important property of multivariate Gaussians and

used for inference. Suppose the state vector 𝒙 of your random variable is

composed of two row vectors, i.e., 𝒙 = [𝒙𝑇𝑎 , 𝒙𝑇𝑏 ]
𝑇
.

Remark 2.6.1 The random variable 𝒙𝑏 might denote the ball position

and 𝒙𝑎 the position of the goalkeeper in a sports game. Using the rule

of conditional probabilities, we can infer the most likely goalkeeper
position 𝒙𝑎 , given a certain ball location (potentially a few milliseconds

after the ball kick event, such that the keeper has still time to react).

Thus we are interested in a conditional probability 𝑝(𝒙𝑎 |𝒙𝑏 ;𝝁,𝚺). Note

that we assume that we have learned a model from observations, e.g.,

pairs of ball and keeper positions. This model is represented by 𝝁 and 𝚺
and as we assume that these parameters are known. We highlight that

difference to the given variable 𝒙𝑎 with a semicolon (’;’).

The solution is given by

𝑝(𝒙𝑎 |𝒙𝑏 ;𝝁,𝚺) = N(𝒙𝑎 |𝝁𝑎 |𝑏 ,𝚺𝑎 |𝑏), (2.7)

with

𝝁𝑎 |𝑏 = 𝝁𝑎 + 𝚺𝑎𝑏𝚺−1

𝑏𝑏
(𝒙𝑏 − 𝝁𝑏) and (2.8)

𝚺𝑎 |𝑏 = 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺−1

𝑏𝑏
𝚺𝑏𝑎 , (2.9)

where we assumed 𝝁 = [𝝁𝑇𝑎 , 𝝁𝑇𝑏 ]
𝑇

and 𝚺 =

[
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

]
.

For more details, we refer to Chapter 2.3, page 87 in the text book of

Christopher M. Bishop [4].

2.7 Information Theory

In this section, we review some of the most important concepts in

information theory.

Entropy

The entropy of a random variable 𝑥 is given by
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H(𝑥) := −
∑
𝑥∈Ω

𝑝(𝑥) log 𝑝(𝑥).

Kullback-Leibler Divergence or Relative Entropy

In computer science, we are often interested in comparing distributions.

Suppose, we have a true data distribution 𝑝(𝑥) and we developed a model

that is represented by the model distribution 𝑞(𝑥). To quantify the quality

of our model distribution, we would like to evaluate the ’distance’ or

’similarity’ to the true data distribution. A common distance measure is

the Kullback-Leibler Divergence or relative entropy,

KL(𝑝 | |𝑞) := −
∫

𝑝(𝑥) log

𝑞(𝑥)
𝑝(𝑥)𝑑𝑥.

Remark 2.7.1 Note that the KL-divergence is not symmetric, i.e.,

KL(𝑞 | |𝑝) ≠ KL(𝑝 | |𝑞).

Two common approaches to generate symetric measures are

KL𝑠1(𝑞 | |𝑝) := KL(𝑞 | |𝑝) + KL(𝑝 | |𝑞) or

KL𝑠2(𝑞 | |𝑝) := min{KL(𝑞 | |𝑝),KL(𝑝 | |𝑞)}.

Mutual Information

Another approach to identify the similarities between two distributions

is the mutual information. Suppose we have a joint distribution over two

random variables 𝑝(𝑥, 𝑦). If both variables are conditionally independent

(see Section 2.4 on fundamental rules of probabilities), then 𝑝(𝑥, 𝑦) =
𝑝(𝑥)𝑝(𝑦). This hypothesis can be validated using the KL-divergence

measure,

KL(𝑝(𝑥, 𝑦)| |𝑝(𝑥)𝑝(𝑦)) = −
∫ ∫

𝑝(𝑥, 𝑦) log

𝑝(𝑥)𝑝(𝑦)
𝑝(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

:= I(𝑥, 𝑦),

which is called the mutual information.

2.8 Exercises

Frequentist or Bayesian View

(a) Explain in your own words the difference between the Frequentist

and Bayesian view when talking about probabilities. Give an

example.
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(b) Assume you are playing with a stranger a game where the winner

is determined by a coin flip. The coin was brought by our opponent

and you are not sure if the coin is loaded, thus not with 𝑝(head =

ℎ) = 𝑝(tail = 𝑡) = 0.5. Use both, the Bayesian View as well as the

Frequentist approach to make a statement about the fairness of

the coin if the number of tossed heads is ℎ = 7 and the number of

tossed tails 𝑡 = 3 (ℎ = 70, 𝑡 = 30). For the Bayesian View, we use a

range of 𝑝(ℎ) = 0.45 to 𝑝(ℎ) = 0.55 to define a fair coin and for the

Frequentist approach we use a confidence of 0.95%.

advanced exercise

Discrete Random Variables

(c) Let X= {rainy, sunny, cloudy} be a set of discrete random values

with 𝑝(rainy) = 0.3 and 𝑝(cloudy) = 0.5. Determine the probability

𝑝(sunny).
(d) Assume you are playing with a stranger a game where the winner

is determined by a coin flip. Assume the coin flip is fair, thus

𝑝(head = ℎ) = 𝑝(tail = 𝑡) = 0.5. You win, if you are tossing

1, 2, 3, . . . , 𝑛 heads in a row. How high has to be your profit if the

bet is 1 Euro to be a fair game. A fair game means thereby that

the profit expectation for both sides is zero. Determine the profit

values for 1, 2, 3 times head in a row and state a general formula

for the case of 𝑛 times head in a row.

Fundamental Rules

(e) Let X= {rainy, sunny, cloudy} be a set of discrete random values

with 𝑝(rainy = 𝑟) = 0.2, 𝑝(cloudy = 𝑐) = 0.4 and 𝑝(sunny = 𝑠) =
0.4. Calculate the Union of {rainy, sunny}. Assume further you

take with probability 𝑝(umbrella = 𝑢) = 0.4 an umbrella with you

when you go out. Calculate the Joint probability 𝑝(𝑟, 𝑢).
(f) Again let X= {rainy, sunny, cloudy} be a set of discrete random

values with 𝑝(rainy = 𝑟) = 0.2, 𝑝(cloudy = 𝑐) = 0.4 and 𝑝(sunny =

𝑠) = 0.4. Now, with conditional probabilities 𝑝(umbrella = 𝑢 |𝑟) =
1, 𝑝(𝑢 |𝑐) = 0.7, 𝑝(𝑢 |𝑠) = 0 you take an umbrella with you when

you go out. Calculate the probability 𝑝(𝑢).
(g) Imagine you are going to a blood donation. For security reasons a

blood probe for every participant is checked for AIDS. The control

of your probe using a standard AIDS test gives back a positive

result. A standard AIDS test is 99.9% sensitive and 99.7% specific.

Thus, it gives back a positive result with a probability of 99.9% for

infected persons and a negative result with a probability of 99.7%

for non-infected persons. About 0.1% of the german population

are infected by AIDS. Calculate the probability that you are really

infected with AIDs using the Bayes’ Theorem.

Continuous Random Variables

(h) Experience shows that the time between two calls to a call center is

approximately exponentially distributed to a certain parameter 𝜆
such that the probability density function (pdf) is

𝑓𝜆(𝑡) = 𝜆 exp(−𝜆𝑡), (2.10)

where 𝑡 ≥ 0. The parameter 𝜆 corresponds to the average number

of calls per time unit and is assumed to be 𝜆 = 0.5. Calculate the
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probability that the next call is received 1 − 2 time units after the

previous one.

Fundamental Discrete Distributions

(i) At the University of Luebeck there is a Applied Robotics class. The

class consists of 100 persons where 60 are Europeans (A), 35 Asians

(B) and 5 Americans (C). Every day one of the students is randomly

chosen to clean the board. What is the probability that 1 European,

3 Asians and 1 American are chosen within one week for cleaning

the board?

Fundamental Continuous Distributions

(j) An industrial company wants to analyze its manufacturing line.

Therefore, they inspect the probability of the produced items to be

defective. From past experience the analyst expects this probability

to be equal to 4%. To quantify his uncertainty he attached a standard

deviation of 2%. Furthermore, the analyst decides to use a beta

distribution to model his uncertainty. How does he have to set the

two parameters 𝛼, 𝛽 in order to match his expected values?

(k) Proof that

𝝁𝑎 |𝑏 = 𝝁𝑎 + 𝚺𝑎𝑏𝚺−1

𝑏𝑏
(𝒙𝑏 − 𝝁𝑏) and (2.11)

𝚺𝑎 |𝑏 = 𝚺𝑎𝑎 − 𝚺𝑎𝑏𝚺−1

𝑏𝑏
𝚺𝑏𝑎 , (2.12)

with 𝝁 = [𝝁𝑇𝑎 , 𝝁𝑇𝑏 ]
𝑇

and 𝚺 =

[
𝚺𝑎𝑎 𝚺𝑎𝑏
𝚺𝑏𝑎 𝚺𝑏𝑏

]
.

advanced exercise

Information Theory

(l) State the four requirements/axioms which lead to the development

of the entropy

𝐻(𝑥) = −
∑

𝑝(𝑥) log(𝑝(𝑥)). (2.13)

Give for every requirement an example.

advanced exercise
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In this chapter we discuss probabilistic basic linear regression methods.

We assume unknown functions of the form 𝒚 = 𝑓 (𝒙) . Per definition we

will always assume column vectors, if not explicitly stated differently.

Thus for the linear regression considered in this chapter, the inputs are

denoted by the vector 𝒙 ∈ ℝ𝐷
and scalar outputs 𝑦 ∈ ℝ1

. Note that for

multi-dimensional outputs multiple independent regression models or more

complex models like multivariate Gaussian Processes [6] may be used.

3.1 Linear Feature Regression

A simple linear regression model can be constructed by

𝑦 = 𝑤1 + 𝑤2𝑥1 + 𝑤3𝑥2 + · · · + 𝑤𝐷+1𝑥𝐷 ,

𝑦 = 𝒙𝑇𝒘. (3.1)

The first parameter 𝑤1 is often called the bias term, the offset or the

intercept. All unknown parameters are denoted by the vector 𝒘 =

[𝑤1 , 𝑤2 , . . . ,𝑊𝐷+1]𝑇 . The input vector is given by 𝒙 = [1, 𝑥1 , 𝑥2 , . . . , 𝑥𝐷]𝑇 ,

where we added a preceding 1 to the inputs.

Figure 3.1: The perceptron neuron model

computes implements 𝑦 = 𝜎(𝑤1+𝑤2𝑥1+
· · · + 𝑤𝐷+1

𝑥𝐷), where the symbol 𝜎 de-

notes the activation function in this arti-

ficial neuron model.

The perceptron neuron model. It is important to note that there is a

direct relationship to the perceptron neuron model, which is shown in

Figure 3.1. To model non-linear functions with perceptions, an activation
function is used, i.e., 𝑦 = 𝜎′(𝒙𝑇𝒘). If a sigmoid activation function is used,

the regression model implements logistic regression which is discussed

below.

For a detailed theoretical discussion and a solid introduction we recom-

mend reading the book of Hertz, Krogh and Plamer [7].

Feature or basis function models. A major drawback of the model in

Equation 3.1 is that the number of parameters 𝒘 is equal to the input

dimension plus one offset term, i.e., 𝐷 + 1. Thus for high dimensional

inputs and a small number of input samples, the model will overfit to the

data. Or in other words, the system of equations is underrepresented.

In practice, a basis function extension of Equation 3.1 is used.

𝑦 = 𝜙(𝒙)𝑇𝒘 , (3.2)

where the function 𝝓 implements a non-linear mapping from the 𝐷-

dimensional input space to a 𝑀-dimensional feature space, i.e, 𝝓(𝒙) :

ℝ𝐷 → ℝ𝑀
. However, it is still a linear regression model.

Feature transformation with

𝝓(𝒙) : ℝ𝐷 → ℝ𝑀
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3.2 Basis function models

We will briefly discuss some of the most common basis function models

which we will also use in subsequent chapters.

Polynomial basis functions. A polynomial regression model of the

order 𝑀 − 1 is defined as

𝑦 = 𝑤1 + 𝑤2𝑥 + 𝑤3𝑥
2 + 𝑤4𝑥

3 + · · · + 𝑤𝑀𝑥
𝑀−1 ,

where 𝑥 denotes a scalar variable. Extensions to𝐷-dimensional inputs 𝒙 ∈
ℝ𝐷

may use 𝐷 ×𝑀 parameters 𝑤 and the derivation is straight forward.

The polynomial regression model using the definition in Equation 3.2

can be written as

𝑦 =

𝑀∑
𝑖=1

𝑥 𝑖−1𝑤𝑖 ,

𝑦 = 𝝓(𝒙)𝑇𝒘 ,

with the feature vector 𝝓(𝒙) = [1, 𝑥, 𝑥2 , 𝑥3 , . . . , 𝑥𝑀−1]𝑇 .

Gaussian basis functions. We consider 𝑀 dimensional basis function

models where 𝝓(𝒙) = [𝜙1(𝒙), 𝜙2(𝒙), . . . , 𝜙𝑀(𝒙)]𝑇 . Each of the individual

𝜙𝑖 maps the 𝐷-dimensional inputs to a scalar, i.e., 𝜙𝑖(𝒙) : ℝ𝐷 → ℝ1
.

For scalar inputs (as in the polynomial fit example above), Gaussian basis

function models are defined as

𝜙𝑖(𝑥) = exp
{− 1

2𝑠2
(𝑥−𝜇𝑖 )2} ,

and for vector inputs, multinomial Gaussians are used, where

𝝓𝑖(𝒙) = exp
{− 1

2
(𝒙−𝝁𝑖 )𝑇 𝚺−1

𝑖
(𝒙−𝝁𝑖 )} . (3.3)

Note that the model covariance 𝚺𝑖 might be equal for all dimensions

𝑖 = 1 . . . 𝑀.

Sigmoidal basis functions. Another commonly used feature transfor-

mation uses the sigmoid function which maps all real number from −∞ to
+∞ to the interval [0, 1]. The sigmoid function is given by

𝜎′(𝑎) = 1

1 + exp
{−𝑎} . (3.4)

The sigmoidal basis functions are defined as

𝜙𝑖(𝒙) = 𝜎′(
𝒙 − 𝝁𝑖

𝒔
),

where 𝒔 denotes a bandwidth or scaling factor.
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3.3 Logisitic Regression

Logistic regression exploits the sigmoid function to map all inputs to the

interval [0, 1]. By defining a threshold within this interval, a classifier

can by build.

Logistic linear regression is defined by

𝑦 = 𝜎′(𝒙𝑇𝒘),

where 𝜎′ denotes the sigmoid function in Equation 3.4. Note that the

function 𝜙(𝒙) in Equation 3.2 may be in the simple linear model the

identity function 𝜙(𝒙) = 𝒙.

In a two-class classification problem, the posterior probability of class 𝐶1

is given by

𝑝(𝐶1 |𝜙(𝒙)) = 𝜎′(𝜙(𝒙)𝑇𝒘),

with 𝑝(𝐶2 |𝜙(𝒙)) = 1 − 𝑝(𝐶1 |𝜙(𝒙)), according to the property of random

variables in Equation 2.1.

A convenient description of this binary classification problem is based

on the Bernoulli distribution that we defined in Subsection 2.5. We can

define a generative probabilistic model for the binary random variable

𝑦 ∈ 0, 1 as follows

𝑝(𝑦 |𝒙 ,𝒘) = Bern(𝑦 |𝜎′(𝜙(𝒙)𝑇𝒘)),

where the mean of the Bernoulli distribution is given by𝝁 = 𝜎′(𝜙(𝒙)𝑇𝒘).

If we threshold the output probability, we can induce a decision rule. For

some new input 𝑥∗ the predicted class is computed by

𝑦∗(𝑥∗) = 1 ⇐⇒ 𝑝(𝑦 = 1|𝑥∗ ,𝒘) > 𝜆.

The threshold is denoted by 𝜆 and we assume the the model parameters

𝒘 were learned from a training dataset, which we will discuss next.

3.4 Maximum Likelihood

To learn the unknown model parameters we assume a given dataset

𝐷 = {𝑿 , 𝒚} with 𝑛 data samples. The 𝐷-dimensional inputs are used in

the input matrix 𝑿 = [𝒙1 , . . . , 𝒙𝑛] ∈ ℝ𝐷 × 𝑛
and output vectors 𝒚 ∈ ℝ𝑛

.

Datasets 𝐷 = {𝑿 , 𝒚} with

𝑿 ∈ ℝ𝐷 × 𝑛
and 𝒚 ∈ ℝ𝑛

We assume Gaussian additative noise on the outputs where

𝑦 = 𝝓(𝒙)𝑇𝒘 + 𝜖 with, (3.5)

𝜖 ∼ N(0, 𝜎). (3.6)

The linear basis function model in Equation 3.2 was extended by addita-

tive Gaussian noise.



3 Linear Probabilistic Regression 17

Under the Gaussian noise assumption, we can construct a probabilistic

generative model to model a single output 𝑦 of the dataset 𝐷 by

𝑝(𝑦 |𝒙 ,𝒘) = N(𝑦 |𝝓(𝒙)𝑇𝒘 , 𝜎2), (3.7)

where both vectors, 𝒘 and 𝝓(𝒙) are 𝑀-dimensional column vectors.

Remark 3.4.1 Assuming identically and independently distributed
(i.i.d.) data samples, the probability of generating the dataset 𝐷 is

given by the factorial distribution

𝑝(𝒚 |𝑿 ,𝒘) =

𝑛∏
𝑖=1

N(𝑦𝑖 |𝝓(𝒙𝑖)𝑇𝒘 , 𝜎2), (3.8)

= N(𝒚 |𝑨𝒘 , 𝜎2𝑰), (3.9)

which the matrix 𝑨 = [𝝓(𝒙1),𝝓(𝒙2), . . . ,𝝓(𝒙𝑛)]𝑇 ∈ ℝ𝑛 × 𝑀
.

The factorial simplifies to a Gaussian distribution due to the i.i.d. data
samples assumption and the product rule of two independent Gaussians

where

N(𝑎 |𝜇1 , 𝜎1) N(𝑏 |𝜇2 , 𝜎2) = N

( [
𝑎

𝑏

]
|
[
𝜇1

𝜇2

]
,

[
𝜎1 0

0 𝜎2

] )
.

Model Learning. We want to find the optimal parameters 𝒘∗
that

maximizes the likelihood, i.e.,

𝒘∗ = arg max

𝒘
𝑝(𝒚 |𝑿 ,𝒘).

Instead of directly evaluating the likelihood, it is mathematically more

convenient to maximize the log of the likelihood (for Gaussians). Thus,

the maximum of the log likelihood can be computed as

𝒘∗
𝑀𝐿 = arg max

𝒘
{log N(𝒚 |𝑨𝒘 , 𝜎2𝑰)},

= arg max

𝒘
{−𝑐 − 1

2𝜎2

(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘)},

where we used the definition of a multivariate Gaussian distribution

in Equation 2.6. The constant is given by 𝑐 = log(2𝜋𝜎2)𝐷/2
and is

independent of the unknown model parameter 𝑤. It will therefore by not

considered in the following derivations.

Definition 3.4.1 The maximization problem above denoted as maximum
likelihood is equivalent to the minimization of the Least squares objective 𝐽𝐿𝑆 ,
i.e.,

𝒘∗
𝐿𝑆 = arg min

𝒘
𝐽𝐿𝑆 ,

= arg min

𝒘
{ 1

2𝜎2

(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘)},

= (𝑨𝑇𝑨)−1𝑨𝑇𝒚. (3.10)
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To obtain the least squares regression result, we computed the derivative

of the objective with respect to the unknown parameters 𝒘 and set it to

zero, i.e.,

𝜕𝐽𝐿𝑆
𝜕𝒘

=
𝜕

𝜕𝒘
{1/2𝜎−2(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘)} = 0. (3.11)

A detailed derivation of the least squares result can be found in the

Appendix B in Section B.1.

Remark 3.4.2 Major drawbacks of the maximum likelihood solution are

that it may overfit to the data or the matrix 𝑨𝑇𝑨 may be singular for

small numbers of data samples. Or the matrix may not be invertible if

not all dimensions of the matrix have been sufficiently explored.

Ridge Regression. In statistics a common solution is called ridge
regression which adds the quadratic regularization term

𝜆
2
(𝒘𝑇𝒘) to the

objective 𝐽𝐿𝑆. Adding the quadratic loss results in the regularized least
squares solution

𝒘∗
𝐿𝑆′ = (𝑨𝑇𝑨 + 𝜆𝑰)−1𝑨𝑇𝒚. (3.12)

3.5 Maximum A-Posteriori

An alternative approach to implement robust linear regression is to put

a prior on the unknown parameters 𝒘. A common prior is a Gaussian

with zero mean and precision 𝜆−1
. Note that the precision is the inverse

of the variance and used for mathematical convenience. We denote the

prior by

𝑝(𝒘) = N(𝒘 |0,𝜆−1𝑰). (3.13)

To obtain the optimal parameter vector 𝒘∗
we apply the Bayes rule in

Equation 2.2 to compute the posterior

𝑝(𝒘 |𝑿 , 𝒚) =
𝑝(𝒚 |𝑿 ,𝒘)𝑝(𝒘)

𝑝(𝒚 |𝑿 ) ∝ 𝑝(𝒚 |𝑿 ,𝒘)𝑝(𝒘). (3.14)

The maximum a-posteriori solution can be obtained through

𝒘∗
𝑀𝐴𝑃 = arg max

𝒘
{log 𝑝(𝒚 |𝑿 ,𝒘) + log 𝑝(𝒘)},

= arg max

𝒘
{logN(𝒚 |𝑨𝒘 , 𝜎2𝑰) + logN(𝒘 |0,𝜆−1𝑰)},

= arg max

𝒘
{−𝑐1 −

1

2𝜎2

(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘) − 𝑐2 −
1

2

𝜆𝒘𝑇𝒘},

= arg min

𝒘
{ 1

2𝜎2

(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘) + 1

2

𝜆𝒘𝑇𝒘},

= (𝑨𝑇𝑨 + 𝜎2𝜆𝑰)−1𝑨𝑇𝒚. (3.15)

Note that the constants 𝑐1 and 𝑐2 are the normalizing factors in the

Gaussian multinomial distribution in Equation 2.6 and are independent
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[4]: Bishop (2006), Pattern recognition and
machine learning

of 𝒘. The final MAP result directly follows from the derivations in

Section B.1 in the Appendix.

Remark 3.5.1 A notable difference to ridge regression in Equation 3.12

is the different regularization term when computing the inverse (𝑨𝑇𝑨+
𝜎2𝜆𝑰)−1

. Ridge regression uses 𝜆 as regularization parameter which is

a result of the additionally introduced cost term
𝜆
2
(𝒘𝑇𝒘).

The maximum a-posteriori solution additionally applies a data dependent
regularization parameter 𝜎 that is a result of the regression model

definition of N(𝑦 |𝝓(𝒙)𝑇𝒘 , 𝜎2) in Equation 3.7. This data dependent

regularization strategy increases the regularization with ’larger’ obser-

vation noise.

3.6 Full Bayesian Inference

Consider the application of the Bayes rule to compute the posterior over

the unknown model parameters 𝒘 in Equation 3.14. To derive the MAP

solution we approximated this posterior by the product of the likelihood

and the prior over the parameters 𝒘. In a full Bayesian approach we will

solve this product numerically through considering a conjugate prior of

the form

𝑝(𝒘) = N(𝒘 |𝒎0 , 𝑺0).

The product of the likelihood and the prior in 3.14 is computed as

𝑝(𝒘 |𝑿 , 𝒚) ∝ 𝑝(𝒚 |𝑿 ,𝒘)𝑝(𝒘),
∝ N(𝒚 |𝑨𝒘 , 𝜎2𝑰)N(𝒘 |𝒎0 , 𝑺0),
= N(𝒘 |𝑽𝑺−1

0
𝒎0 + 𝜎−2𝑽𝑨𝑇𝒚,𝑽 ), (3.16)

where the posterior covariance is given by 𝑽 = 𝜎2(𝜎2𝑺−1

0
+𝑨𝑇𝑨)−1

. Note

that to obtain this result we made use of the Gaussian marginal and

conditional distributions. For more details on this derivation we refer

to [4].

To better visualize the difference to ridge regression in Equation 3.12

and to the maximum a-posteriori solution in Equation 3.15, we assume a

zero mean, scalar variance prior as in Equation 3.13 with 𝒎0 = 0 and

𝑺0 = 𝜆−1𝑰.

𝑝(𝒘 |𝑿 , 𝒚) = N(𝒘 |(𝜆𝑰 + 𝜎−2𝑨𝑇𝑨)−1𝜎−2𝑨𝑇𝒚, (𝜆𝑰 + 𝜎−2𝑨𝑇𝑨)−1),
= N(𝒘 |𝜎2(𝑨𝑇𝑨 + 𝜎2𝜆𝑰)−1𝜎−2𝑨𝑇𝒚, (𝜆𝑰 + 𝜎−2𝑨𝑇𝑨)−1),
= N(𝒘 |𝒘∗

𝑀𝐴𝑃 , (𝜆𝑰 + 𝜎−2𝑨𝑇𝑨)−1),
= N(𝒘 |𝝁𝒘 |𝒚 ,𝚺𝒘 |𝒚). (3.17)

where 𝝁𝒘 |𝒚 = 𝒘∗
𝑀𝐴𝑃

with

𝝁𝒘 |𝒚 = (𝑨𝑇𝑨 + 𝜎2𝜆𝑰)−1𝑨𝑇𝒚, (3.18)

𝚺𝒘 |𝒚 = (𝜆𝑰 + 𝜎−2𝑨𝑇𝑨)−1. (3.19)
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Remark 3.6.1 When using a zero mean prior with a scalar variance,

the mean of the full Bayesian solution is equivalent to the maximum
a-posteriori solution. However, in the full Bayesian approach, we ad-

ditionally compute an estimate of the parameter uncertainty. This

uncertainty estimate will become important when computing predic-

tions.

The parameter mean is denoted by 𝝁𝒘 |𝒚 in Equation 3.18. The parameter

uncertainty 𝚺𝒘 |𝒚, defined in Equation 3.19, is important for computing

predictions which we will discuss next.

3.7 Predictive Distribution

In practice we are often interested in making predictions about potential

outputs 𝑦∗ given some test input sample 𝒙∗. Such predictions can be

computed by evaluating the predictive posterior distribution defined by

𝑝(𝑦∗ |𝒙∗ ,𝑿 , 𝒚) =

∫
𝑝(𝑦∗ |𝒙∗ ,𝒘)𝑝(𝒘 |𝑿 , 𝒚)𝑑𝒘.

=

∫
N(𝑦∗ |𝝓(𝒙∗)𝑇𝒘 , 𝜎2

𝑦)N(𝒘 |𝝁𝒘 |𝒚 ,𝚺𝒘 |𝒚)𝑑𝒘.

Definition 3.7.1 The convolution of the two Gaussian distributions can be
solved through applying the Gaussian identity [8]∫

N(𝒚 |𝑭𝒙 , 𝜎2

𝑦𝑰)N(𝒙 |𝝁𝒙 ,𝚺𝒙)𝑑𝒙 = N(𝒚 |𝑭𝝁𝒙 , 𝜎
2

𝑦𝑰 + 𝑭𝚺𝒙𝑭𝑇). (3.20)

Note that this convolution is solved through first computing the joint distribu-
tion of the product and thereafter the marginal.

When using parameter posterior in Equation 3.17 and the likelihood in

Equation 3.8 we obtain the predictive distribution of

𝑝(𝑦∗ |𝒙∗ ,𝑿 ,𝒘) = N

(
𝑦∗ |𝝓(𝒙∗)𝑇𝝁𝒘 |𝒚 , 𝜎

2

𝑦 + 𝝓(𝒙∗)𝑇𝚺𝒘 |𝒚𝝓(𝒙∗)
)
, (3.21)

where the mean 𝝁𝒘 |𝒚 and the covariance 𝚺𝒘 |𝒚 of the parameter posterior

are given in Equations 3.18 and 3.19.

Remark 3.7.1 The variance of the predictive distribution depends on

two terms. First on the test data sample noise model by 𝜎𝑦 and on

the model uncertainty denoted by 𝝓(𝒙∗)𝑇𝚺𝒘 |𝒚𝝓(𝒙∗). Note that the

second term translates into a variance that depends on how ’close’

the new test sample is to the training data used to learn the model in

Equation 3.17. For large training datasets this term converges to zero

and the 𝜎𝑦 dominates the uncertainty estimate.

We conclude this chapter with an overview over the discussed linear

regression methods in Figure 3.2.
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Figure 3.2: This overview of the dis-

cussed probabilistic linear regression

methods which are all special cases of

Bayesian Linear Regression.

3.8 Exercises

Maximum Likelihood

(a) Consider an online learning scenario where data samples arrive

in sequence. Derive an online least least squares approach that

applies updates of the form 𝒘𝜏+1 = 𝒘𝜏 − 𝜂Δ𝒘. The symbol 𝜂
denotes the learning rate, 𝜏 the learning iteration and Δ𝒘 denotes

the weight update. The approach is also known as the least-mean-
squares approach.

(b) Extend the linear basis function model to multi-dimensional or

multi-variate outputs, where the matrix 𝑾 = [𝒘1 , . . . ,𝒘𝐷𝑦 ] ∈
ℝ𝑀 × 𝐷𝑦

denotes the unknown model parameters and 𝐷𝑦 the

dimension of the outputs. Derive the maximum likelihood solution

and show that each column in 𝑾 is computed through the least

squares regression in Equation 3.10.

Ridge Regression

(c) Derive the maximum likelihood solution with an objective that

implements the additional term
𝜆
2
(𝒘𝑇𝒘).

(d) Derive regularized online updates for 𝒘𝜏+1
as in the sequential

model learning task in Exercise (a).

Maximum A-posteriori

(e) Derive the MAP solution following the principles in Section B.1 in

the Appendix.

(f) Demonstrate in a synthetic dataset with large induced noise how

the prior influences the model predictions based on the number

of data samples. Evaluate the corresponding mean squared error

with respect to the training dataset size.

Full Bayesian Regression

(g) Compute the predictive posterior for the prior distribution 𝑝(𝒘) =
N(𝒘 |𝒎0 , 𝑺0).

(h) Show that Equation 3.21 is a special case of the resulting model

from Exercise (g).
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4.1 Gaussian Processes

In this section, we will briefly explain and derive Gaussian Processes. For

more details we refer to [9].

Multivariate Conditional Distribution

In order to understand Gaussian Processes first consider a multivariate

normal distribution as introduced in section 2.6 with 𝒙′ = {𝑥′
1
, . . . , 𝑥′

𝑘
}

𝑓 (𝒙′ |𝝁,𝚺) = 1√
(2𝜋)𝑘 |𝚺|

exp

(
−1

2

(𝒙′ − 𝝁)⊤𝚺−1(𝒙′ − 𝝁)
)
, (4.1)

which can be written as

𝒙′ ∼ N(𝝁,𝚺). (4.2)

Figure 4.1 shows such a normal distribution. By partition the Gaussian

random vector 𝒙′ into 𝒙 and 𝒚, where both are jointly Gaussian random

vectors, the term Equation 4.2 becomes[
𝒙
𝒚

]
∼ N

( [
𝝁𝑥
𝝁𝑦

]
,

[
𝑨 𝑪
𝑪⊤ 𝑩

] )
. (4.3)
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Figure 4.1: The figure shows a two di-

mensional Gaussian Distribution created

using Matlab with 𝝁 = [0 0] and 𝚺 = [0.2

0.2; 0.2 1.0].

The marginal distribution of 𝒙 is

𝒙 ∼ N(𝝁𝒙 ,𝑨) , (4.4)

and the conditional distribution of 𝒙 given 𝒚 is

𝒙 |𝒚 ∼ N(𝝁𝑥 + 𝑪𝑩−1(𝒚 − 𝝁𝑦),𝑨 − 𝑪𝑩−1𝑪⊤).

Thus the conditional expectation (denoted by the symbol 𝔼) and the

covariance matrix (denoted by the symbol Σ) can be written as

𝔼(𝒙 |𝒚) = 𝝁𝑥 + 𝑪𝑩−1(𝒚 − 𝝁𝑦) ,
Σ𝒙 |𝒚 = 𝑨 − 𝑪𝑩−1𝑪⊤.

(4.5)

Derivation of Gaussian Processes

Gaussian Processes are probabilistic models which can be used to estimate,

on the basis of known data, a mean and a variance for an unknown data

point. They use the relation given in Equation 4.5. Consider a training set

𝑇 = {(𝒙𝑖 , 𝑦𝑖)} = (𝑋, 𝒚) where 𝒙𝑖 denotes an input vector of dimension 𝐷

and 𝑦𝑖 denotes a scalar output. Here, 𝑋 contains all the input data and

𝒚 all the output (target) data of the training set. In order to determine

expectation values for 𝒚∗, the values 𝒚 at the states 𝑋 = (𝒙1 , . . . , 𝒙𝑛)
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Figure 4.2: Example for a one dimen-

sional Gaussian Process. The test func-

tion is a sinus; Six observation points

have been used to determine an estima-

tion result (mean values) and the model

uncertainty (variance).

have to be known. Rewriting equation Equation 4.3 with the predefined

training set yields[
𝒚
𝒚∗

]
∼ 𝑁

( [
𝝁(𝑋)
𝝁(𝑋∗)

]
,

[
𝑲(𝑋, 𝑋) 𝑲(𝑋, 𝑋∗)
𝑲(𝑋∗ , 𝑋) 𝑲(𝑋∗ , 𝑋∗)

] )
, (4.6)

where 𝝁(·) are the expectation values given a certain input set and 𝑲(·, ·)
a covariance matrix determined through two input sets. The expectation

values and the variance of the unknown values 𝒚∗ can be derived with

Equation 4.5, as

𝔼(𝒚∗ |𝒚, 𝑋, 𝑋∗) = 𝝁∗ + 𝑲⊤
∗ 𝑲

−1(𝒚 − 𝝁) ,
Σ𝒚∗ |𝒚,𝑋,𝑋∗ = 𝑲∗∗ − 𝑲⊤

∗ 𝑲
−1𝑲∗ ,

(4.7)

where 𝝁(𝑋) = 𝝁, 𝝁(𝑋∗) = 𝝁∗, 𝑲(𝑋, 𝑋) = 𝑲, 𝑲(𝑋, 𝑋∗) = 𝑲∗ and

𝑲(𝑋∗ , 𝑋∗) = 𝑲∗∗. The mean function 𝝁(·) can be generated using proper

information of the target values 𝑦𝑖 given the input 𝒙𝑖 or, if non such

information is available, can be set to zero. The covariance function

(kernel function) defines nearness or similarity and the covariance matrix

𝑲 has to be positive definite. Possible types of such kernels are

▶ 𝑘 = 𝑘(𝒙− 𝒙′) (stationary, invariant to translation in the input space).

▶ 𝑘 = 𝑘(| |𝒙 − 𝒙′ | |) (isotropic, invariant to all rigid motions).

▶ 𝑘 = 𝑘(𝒙 · 𝒙′) (dot product, invariant to rotation).

A commonly used kernel function is the squared-exponential covariance

function 𝑘se(𝜏) = 𝜎2

𝑓
exp

(
− 𝜏2

2𝑙2

)
with 𝜏 = | |𝒙 − 𝒙′ | |. The variables 𝜎 𝑓 and

𝑙 are hyperparameters. This kernel is smooth because the function is

infinitely differentiable. The properties of a kernel around 0 determine

the smoothness of the stationary process. A one dimensional example of

a Gaussian Process is shown in Figure 4.2.

Noisy Observations

Are the given data, thus the training set𝑇 = {(𝒙𝑖 , 𝑦𝑖)} = (𝑋, 𝒚), corrupted

with white noise, e.g. 𝑦𝑖 = 𝑧(𝒙𝑖) + 𝜖𝑖 with 𝜖𝑖 ∼ 𝑁(0, 𝜎2

𝑛), it can be taken

into account by adding 𝜎2

𝑛 𝑰 to the covariance matrix 𝑲. The matrix 𝑰
describes an identity matrix with convenient size. Equation Equation 4.6
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becomes [
𝒚
𝒚∗

]
∼ 𝑁

( [
𝝁(𝑋)
𝝁(𝑋∗)

]
,

[
𝑲 + 𝜎2

𝑛𝑰 𝑲∗
𝑲⊤

∗ 𝑲∗∗

] )
,

with

𝔼(𝒚∗ |𝒚, 𝑋, 𝑋∗) = 𝝁∗ + 𝑲⊤
∗ (𝑲 + 𝜎2

𝑛𝑰)−1(𝒚 − 𝝁) ,
Σ𝒚∗ |𝒚,𝑋,𝑋∗ = 𝑲∗∗ − 𝑲⊤

∗ (𝑲 + 𝜎2

𝑛𝑰)−1𝑲∗.
(4.8)

Meta Learning for Parameter Adjustment

Assuming zero mean (𝝁(·) = 0), in equation Equation 4.8 only the param-

eters of the kernel function 𝜽 are unknown. Either one can choose these

parameters by trial and error or use Bayesian Optimization to find optimal

parameters for a certain problem. The aim of Bayesian Optimization is to

find parameters 𝜽 which maximize equation Equation 4.1. The logarithm

of the likelihood,

log( 𝑓 (𝒚 |𝑋, 𝜽)) = −1

2

𝒚⊤𝑲−1𝒚 − 1

2

log| |𝑲 | | − 𝑛

2

log(2𝜋) ,

is used for maximization. In order to use optimization methods, such

as gradient descent, the derivation of the above log likelihood has to be

computed

𝜕log( 𝑓 (𝒚 |𝑋, 𝜽))
𝜕𝜃𝑗

=
1

2

tr

(
(𝜶𝜶⊤ − 𝑲−1) 𝜕𝑲

𝜕𝜃𝑗

)
,

with 𝜶 = 𝑲−1𝒚 and 𝑛 the number of data points in the training set, is

required.

4.2 GP with built-in GMRF

This section deals with the construction of a Gaussian Process with

built-in Gaussian Markov Random Field. This method can lead to an

immense reduction in computational effort compared to Gaussian Pro-

cesses but leads to worse estimation results. Nevertheless, the reduction

in computational effort makes this method interesting for the utilization

in mobile robotic applications, such as drones. A detailed overview of the

theory for Gaussian Processes with built-in Gaussian Markov Random

Fields can be found in [10].

Spatial Field

First, consider a Gaussian Markov Random Field with respect to a

graph 𝑆 = (𝑉, 𝐸) and 𝐹 = { 𝑓 (𝒑1), . . . , 𝑓 (𝒑𝑚)}⊤ ∼ N(0,𝑸−1). As shown

𝑄𝑖 𝑗 ≠ 0 ⇔ {𝑖 , 𝑗} ∈ 𝐸 (Equation 5.3) or, in other words, 𝑓 (𝒑𝑖) and 𝑓 (𝒑 𝑗)
are not conditionally independent.

A spatial field can be modelled as

𝑧(𝒙) = 𝜇(𝒙) +
𝑚∑
𝑗=1

𝜆(𝒙 , 𝒑 𝑗) 𝑓 (𝒑 𝑗) ,
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which is a Gaussian Process with a built-in Gaussian Markov Random

Field with a weighting function𝜆(·, ·). The weighting function can be seen

as a similarity function (e.g. squared exponential kernel). The vertices of

the graph 𝑆, {𝒑1 , . . . , 𝒑𝑚}, are called generating points. The number and

the position of the generating points can be determined using a model

selection criterion and the log likelihood method.

The advantage of such an approach is, that there are many tuning knobs,

such as a different number of generating points or a different structure

of the precision matrix. Thus, the model can be adjusted to different

problems using this tuning knobs.

In order to develop an estimation scheme using the given spatial field,

assume there are observations 𝒚 = (𝑦1 , . . . , 𝑦𝑛)⊤ at points 𝒙1 , . . . , 𝒙𝑛
given. The observations are noisy with 𝑦𝑖 = 𝑧(𝒙𝑖)+ 𝜖𝑖 with 𝜖𝑖 ∼ 𝑁(0, 𝜎2

𝑤),
thus an independent and identically distributed Gaussian white noise.

The covariance matrix for 𝒚 is

𝑪 = 𝚲𝑸−1𝚲⊤ + 𝜎2

𝑤𝑰 , (4.9)

and the covariance between 𝒚 and 𝑧0(𝒔), where 𝒔 is a certain point of

interest, is

𝒌 = 𝚲𝑸−1𝝀. (4.10)

Here 𝚲 ∈ ℝ𝑛×𝑚
is a matrix given by (𝚲)𝑖 𝑗 = 𝜆(𝒙𝑖 , 𝒑 𝑗) and 𝝀 ∈ ℝ𝑚×1

is a

vector given by (𝝀)𝑖 = 𝜆(𝒑𝑖 , 𝒔). A proof can be found in [10, p. 79, 80].

With the foregoing conclusions, it is possible to make a prediction by

using the terms for Gaussian Process Regression as shown in section

Equation 4.1. By inserting the covariance matrices from Equation 4.9 and

Equation 4.10 into Equation 4.7, where 𝑲 = 𝑪 and 𝑲∗ = 𝒌,

𝔼(𝑧0 |𝒚) = 𝜇(𝒔) + (𝚲𝑸−1𝝀)⊤(𝚲𝑸−1𝚲⊤ + 𝜎2

𝑤𝑰)−1(𝒚 − 𝝁(𝑋)) ,
Σ𝑧0 |𝒚 = 𝝀⊤𝑸−1𝝀 − (𝚲𝑸−1𝝀)⊤(𝚲𝑸−1𝚲⊤ + 𝜎2

𝑤𝑰)−1(𝚲𝑸−1𝝀) ,
(4.11)

can be derived. Using the Woodbury Matrix Identity (see Marc Toussaint’s

Gaussian identities [8]), the Equations 4.11 transform into

𝔼(𝑧0 |𝒚) = 𝜇(𝒔) + 𝝀⊤𝑸̂−1𝒚̂ ,

Σ𝑧0 |𝒚 = 𝝀⊤𝑸̂−1𝝀 ,

with

𝑸̂ = 𝑸 + 𝜎−2

𝑤 𝚲⊤𝚲 ,

𝒚̂ = 𝜎−2

𝑤 𝚲⊤(𝒚 − 𝝁(𝑋)) .

A proof can be found in [10, p. 81–82]. Comparing the estimation method

with the Gaussian Processes presented in section 4.1, a difference in

the matrices which have to be inverted can be seen. For the Gaussian

Process a matrix 𝑲 ∈ ℝ𝑛×𝑛
has to be inverted, whereas for the GP with

built-in GMRF a matrix 𝑸 ∈ ℝ𝑚×𝑚
has to be inverted. The computational

complexity, without calculating the inverse, grows linearly with the

number of observations 𝑛. In combination with the computational effort

for the matrix inversion it can be shown that Gaussian Processes have

a computational complexity of O(𝑛3), whereas GP with built-in GMRF

have a computational complexity of O(𝑛𝑚2). In most cases the number

of generating points 𝑚 will be chosen at the beginning of the process and
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then remains constant. On the other hand the number of observations 𝑛

may rise with time. Thus, the computational complexity may grow fast

for Gaussian Processes considering the factor 𝑛3
.

4.3 Exercises

Gaussian Processes

(a) Briefly describe the role that Kernel functions play in modelling

Gaussian processes. Why are the Kernel functions used in Gaussian

Processes required to be positive definite?

(b) For 𝑥 ∈ [0, 5], compute the Covariance function of a Gaussian

Process using three different Kernels:

𝑘1(𝑥1, 𝑥2) = exp

(
− ||𝑥1 − 𝑥2 | |2

2

)
,

𝑘1(𝑥1, 𝑥2) =
(
𝑥⊤

1
𝑥2 + 2

)
,

𝑘1(𝑥1, 𝑥2) = exp (−|𝑥1 − 𝑥2 |) ,

Then, sample a set of 10 different latent functions f according to the

Gaussian process prior:

𝑓 ∼ N(0, 𝐾) ,

for all three different Kernel/Covariance Matrices and plot them.

What are the differences?

GP with built-in GMRF

(c) A precision matrix required for the GP with built-in GMRF has to

be positive definite, thus 𝑸 > 0. State the definition for positive

definite matrices. Further proof, that if a Matrix 𝑨 is symmetrical

and strictly diagonal dominant and all diagonal elements of 𝑨 are

positive, then 𝑨 is positive definite.

(d) Assume you have a regular lattice with a distance between the

vertices of 1. Design precision matrices for taking into account

(a) neighbouring vertices with distance 𝑟 ≤ 1.

(b) neighbouring vertices with distance 𝑟 ≤ 2.

(e) Proof for 𝜎𝑤 = 0 that the GP with built-in GMRF transform into

𝔼(𝑧0 |𝒚) = 𝜇(𝒔) + 𝝀⊤(𝚲⊤𝚲)−1𝚲⊤(𝒚 − 𝝁(𝑋)) ,
Σ𝑧0 |𝒚 = 0 .
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This section on Markov models was written by Nils Rottmann. It discusses

Markov Chains, Random Fields, and Gaussian Markov Random Fields.

Further details to Markov Random Fields can be found in [11] and [12].

Gaussian Markov Random Fields are discussed in detail in [13].

5.1 Markov Chains

A Markov chain is a representation of a sequence of variables (𝑥1 , 𝑥2 , . . . )
which are specified by the conditionals 𝑝(𝑥𝑖 |𝑥𝑖−1 , . . . , 𝑥1). A simple

Markov chain example models weather forecasts which can be either

sunny or rainy, such that 𝑥𝑖 ∈ 𝐿 = {sunny, rainy}. The weather on day

𝑖 can be influenced by the weather of many foregoing days but, for the

simplest case, it would be only directly related to the weather of day 𝑖 − 1.

Such a Markov chain is shown in Figure 5.1. The underlying assumption

is called a first-order Markov assumption

𝑝(𝑥𝑖 |𝑥𝑖−1 , . . . , 𝑥1) = 𝑝(𝑥𝑖 |𝑥𝑖−1).

In the same way a 𝑛-th-order Markov assumption can be described as

𝑝(𝑥𝑖 |𝑥𝑖−1 , . . . , 𝑥1) = 𝑝(𝑥𝑖 |𝑥𝑖−1 , . . . , 𝑥𝑖−𝑛).

Of course, even in the first-order Markov chain all foregoing variables are

. . . . . .x1 xi−1 xi xi+1 xn

Figure 5.1: The figure shows a directed

Markov chain where the foregoing events

have an influence on the following

events.

linked implicitly with 𝑥𝑖 . As for our example, the conditional probabilities

can be described as

𝑃 =

[
𝑝(sunny|sunny) 𝑝(rainy|sunny)
𝑝(sunny|rainy) 𝑝(rainy|rainy)

]
=

[
0.9 0.1

0.5 0.5

]
,

which can also be represented in a graph as shown in Figure 5.2. Contin-

uing with the example and assuming the weather on day one to be sunny

gives 𝑋1 = [𝑝(sunny) 𝑝(rainy)] = [1 0]. Calculating the conditional

probabilities for day two leads to

𝑋2 = 𝑋1𝑃 =
[
0.9 0.1

]
,

and for day 1 + 𝑛 to

𝑋1+𝑛 = 𝑋1 𝑃
𝑛 .

sunny rainy
0.9

0.1

0.5

0.5

Figure 5.2: A Markov Graph with a first-

order Markov assumption. The condi-

tional probabilities are written on the

arrows.
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5.2 Markov Random Fields

A Markov Random Field is described by an undirected graph 𝑆 = (𝑉, 𝐸),
where 𝑉 = {1, . . . , 𝑛} are the vertices and 𝐸 the edges of the graph, in

which the vertices and edges are related via a neighbouring system

𝑁 = {𝑁𝑖 |∀𝑖 ∈ 𝑉}.

Here 𝑁𝑖 is a set of vertices neighbouring 𝑖. The properties for such a

neighbouring system are

(1) 𝑖 ∉ 𝑁𝑖 ,

(2) 𝑖 ∈ 𝑁𝑗 ↔ 𝑗 ∈ 𝑁𝑖 .

For a regular lattice such a neighbouring system could be described as

𝑁𝑖 = { 𝑗 ∈ 𝑉 |𝑑(𝑥 𝑗 , 𝑥𝑖) ≤ 𝑟; 𝑗 ≠ 𝑖},

where 𝑥 𝑗 and 𝑥𝑖 are the positions of the vertices 𝑗 and 𝑖 and 𝑑(·, ·) a

distance measure. In Figure 5.3 examples of such a neighbouring system

are shown. Other (irregular) neighbouring systems are possible.

2 2

Figure 5.3: Two systems with a regular

lattice and 𝑟 = 2 (left) and 𝑟 = 3 (right).

The yellow lines lead to the neighbours

of the central point. They represent the

edges. The distance between two nearest

points, vertical and horizontal, is 2.

A Markov Random Field can be defined as a family of random variables

𝐹 = {𝐹𝑖 , . . . , 𝐹𝑛}, which are defined on the set of vertices𝑉 . Each variable

𝐹𝑖 takes a value 𝑓𝑖 ∈ 𝐿, where 𝐿 is a label set (e.g. 𝐿 = {sunny, rainy})
and the probability of 𝐹 taking the value 𝑓𝑖 is

𝑝(𝐹𝑖 = 𝑓𝑖) = 𝑝( 𝑓𝑖).

For a Markov Random Field on 𝑉 the following two properties have to

hold:

(1) 𝑝( 𝑓 ) > 0 ∀ 𝑓 ∈ 𝐹 , (Positivity)

(2) 𝑝( 𝑓𝑖 | 𝑓𝑉−{𝑖}) = 𝑝( 𝑓𝑖 |𝑁𝑖) . (Markovianity)

The positivity is assumed for technical reasons and normally no problem

in practice. The Markovianity depicts that, given all neighbours to 𝑖, the

non-neighbours do not have any influence on the probability of 𝑖. In

other words, labels without edges in between have to be conditionally

independent, thus the equation

𝑝(𝑥𝑖 , 𝑥 𝑗 |𝒙−{𝑖 𝑗}) = 𝑝(𝑥𝑖 |𝒙−{𝑖 𝑗})𝑝(𝑥 𝑗 |𝒙−{𝑖 𝑗}) ,

has to be fulfilled if 𝑥𝑖 and 𝑥 𝑗 are no neighbours.

5.3 Gaussian Markov Random Fields

A Gaussian Markov Random Field has the same structure as a Markov Random
Field adding one restriction, such that the probability distribution of 𝐹 =

{𝐹𝑖 , . . . , 𝐹𝑛} is normally distributed with mean 𝝁 and a covariance matrix

𝚺. The conditional independence between pairwise unconnected vertices,

thus the information of the graph 𝑆, can be found in the parameters of the

normal distribution 𝝁 and 𝚺, thus 𝑝(𝑥𝑖) ∼ N(𝝁,𝚺). Since the mean does

not have any influence on the conditional independence properties of 𝑭
only the covariance matrix𝚺 remains. Considering the inverse covariance
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matrix instead of the covariance matrix, the so called precision matrix

𝑸 = 𝚺−1

, it turns out that

𝑝(𝑥𝑖 , 𝑥 𝑗 |𝒙−{𝑖 𝑗}) = 𝑝(𝑥𝑖 |𝒙−{𝑖 𝑗})𝑝(𝑥 𝑗 |𝒙−{𝑖 𝑗}) ⇐⇒ 𝑸𝑖 𝑗 = 0.

A proof of this property can be found in [13, p. 22]. These important

property of Gaussian Markov Random Fields makes the precision matrix

sparse, which leads to an immense reduction of computational effort.

5.4 Variogram

The variogram is used in spatial statistics to describe the degree of spatial

dependence of a spatial field. Thus, in case of an estimation problem,

it can give information about which dimensions have a great influence

on the estimation process. Such information can give an idea how to set

the hyperparameters of a certain covariance function and which type of

covariance function should be chosen.

For simplicity only the two dimensional field is considered. Assume a

vector 𝒉 which has a length | |𝒉 | | = 𝑙 and a direction 𝛼 (angle). Given

𝑛 pairs of data separated by 𝒉, the experimental semi-variogram can be

calculated for the distance 𝑙 and angle 𝛼 by

𝛾(𝒉) = 𝛾(𝑙 , 𝛼) = 1

2𝑛

𝑛∑
𝑖=1

(𝑦(𝒙𝑖 + 𝒉) − 𝑦(𝒙𝑖))2 ,

where 𝑦(𝒙) is the value at position 𝒙.

This is the expectation for the squared increment of the values between

locations 𝒙 and 𝒛:

𝛾(𝒙 , 𝒛) = 𝔼
[
(𝑦(𝒙) − 𝑦(𝒛))2

]
.

Thus, the lower the value of the variogram, the higher is the spatial

dependence between points in 𝒉 direction.

The methods used for the construction of the variogram depend highly

on the structure of the given data. In this thesis, only aligned data within

a regularly spaced grid are considered. Therefore, four main directions,

𝛼1, 𝛼2, 𝛼3 and 𝛼4, with four main distances, 𝑙1, 𝑙2, 𝑙3 and 𝑙4 are used (see

Figure 5.4).

α1

α2

α3 α4

xi

xi + h1

xi + h4xi + h3

xi + h2

Figure 5.4: The figure shows how the

data is arranged by calculating the exper-

imental semi-variogram.

5.5 Exercises

(a) A Markov Model shall be used for the weather forecast. Therefore

the three states rainy, sunny and cloudy are defined. The transition

propabilities for the state transition from state 𝑠0 to state 𝑠1 in one

time step can be found in the table below. Sketch the complete

Markov Model (inclusive self-return) and calculate the transfer

matrix 𝑷 which can be used to transfer the state 𝒙𝑖 into the state

𝒙𝑖+1 for 𝒙 = [rainy, sunny, cloudy]⊤.

𝒙𝑖+1 = 𝑷𝒙𝑖
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Using the transfer matrix 𝑷 calculate the steady state of the system,

thus the state for 𝑖 → ∞.

𝑠0 𝑠1 𝑝(𝑠1 |𝑠0)
rainy sunny 0.5

rainy cloudy 0.1

sunny rainy 0.2

sunny cloudy 0.5

cloudy rainy 0.8

cloudy sunny 0.1

(b) Proof that

𝑝(𝑥𝑖 , 𝑥 𝑗 |𝒙−{𝑖 𝑗}) = 𝑝(𝑥𝑖 |𝒙−{𝑖 𝑗})𝑝(𝑥 𝑗 |𝒙−{𝑖 𝑗}) ⇐⇒ 𝑸𝑖 𝑗 = 0.

with 𝑸 = 𝚺−1

being the precision matrix for a GMRF.
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In this chapter, we will introduce a probabilistic time series model that is

based on a linear feature regression (see Section 3.1).

Definition 6.0.1 Time series are defined as a series of data points indexed
or listed in time order. We distinguish between two categories of analysis
approaches: (i) time-domain models and (ii) frequency-domain models. In
this chapter, we will discuss a time-domain model and for frequency domain
approaches we refer to spectral or wavelet analyses methods discussed in [14].

Another important feature of a time series model is how correlations in

multi-dimensional datasets are represented. In decoupled approaches,

independent models are learned for each dimensions. As an example

consider independent Gaussian Processes (see Section 4.1) for the position

of a quadcopter. Here for each dimension of Cartesian coordinates in

x-y-z individual GPs are trained.

In contrast in coupled time series models, the correlation between mul-

tiple input dimensions is captured by the model. This coupling can be

exploited to predict for example time series data of the x-coordinate

give the y-coordinate in a quadcopter flight. Or this powerful feature

can be used to predict human arm motions solely from observing the

motion of the shoulders [15]. For exampling in sports like boxing, humans

can anticipate future actions from observing only a few milliseconds of

shoulder movements.

In the following, we will introduce such a coupled time series model.

However, for simplicity, we will initially only consider a one-dimensional

dataset and will generalize the model to multi-dimensional datasets at

the end of this chapter.

6.1 Time Series Data

We consider data of the form 𝐷 = {𝑦1,1 , 𝑦2,1 , . . . , 𝑦𝑇,𝑛} where 𝑇 denotes

the number of time steps and 𝑛 the number of demonstrations or tra-
jectories. We denote a trajectory by 𝝉, which is given by a sequence of

observations 𝑦, i.e., 𝝉𝑗 = [𝑦1, 𝑗 , . . . , 𝑦𝑇,𝑗]. For the moment we assume

scalar observations (𝑦 ∈ ℝ1
) and that all trajactories 𝑗 = 1 . . . 𝑛 have the

length 𝑇.

Our goal is to build a probabilistic time series model from these 𝑛

trajectories denoted by 𝑝(𝝉).
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6.2 Single Time Step Model

For a single time step, we define a Gaussian linear feature model of the

form

𝑝(𝑦𝑡 |𝒘) = N(𝑦𝑡 |𝝓𝑇
𝑡 𝒘 , 𝜎

2

𝑦) , (6.1)

where 𝝓𝑡 denotes non-linear basis functions for the time step 𝑡 ∈ [1, 𝑇].
The feature vector 𝒘 will be learned for example through least squares

regression and 𝜎𝑦 denotes the standard deviation of the observations.

This noise parameter will be used later to balance how much we trust

new observations compared to a learned model.

Remark 6.2.1 The same model was used for static data in Equation 3.7.

Note that we assume here additive Gaussian noise with zero mean

(see Equations 3.5).

Radial Basis Functions. We consider radial basis functions that imple-

ment the function: 𝝓𝑡 : ℝ1 → ℝ𝑀
. Radial basis functions are Gaussians

basis functions as in Section3.2, however, here the exponential functions

are arranged in time. An illustration of 𝑀 = 5 radial basis functions is

shown in Figure 6.1.
Figure 6.1: Shown are five normalized ba-

sis functions arranged in the movement

phase interval [0, 1].Let 𝑖 denote the 𝑖-th of the 𝑀 basis functions, where

𝜙𝑖𝑡 = exp
{− 1

2ℎ
(𝑧𝑡−𝑐𝑖 )2} .

For the linear regression model in Equation 6.1, we compute the normal-

ized radial basis function vector:

𝝓𝑡 =
1∑𝑀

𝑖=1
𝜙𝑖𝑡

[𝜙1

𝑡 , 𝜙
2

𝑡 , . . . , 𝜙
𝑀
𝑡 ] . (6.2)

The bandwidth of the Gaussian is denoted by ℎ. In practice, it is often

computed by

ℎ =
1

2

(𝑐𝑖+1 − 𝑐𝑖)2 ,

which automatically adapts the bandwidth to different basis function

numbers 𝑀.

The Movement Phase, is denoted by the variable 𝑧𝑡 and implements

a mapping from the discrete time steps 𝑡 ∈ [1, 𝑇] to a movement phase

where 𝑧𝑡 ∈ [0, 1]. In the linear case,

𝑧𝑡 =
1

𝑇 − 1

(𝑡 − 1) .

The movement phase can be scaled by a multiplicative factor to any

movement duration regardless of the model representations, e.g., to 5

seconds or 5 minutes. More complex movement phase implementations

might exploit the sigmoid function which maps all real number from −∞ to
+∞ to the interval [0, 1] (see Equation 3.4).
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6.3 Multi-Time Step Models

For multiple time steps, we assume that the observations in 𝝉𝑗 =

[𝑦1, 𝑗 , . . . , 𝑦𝑇,𝑗] are i.i.d.. Note that a similar assumption was made when

we derived the Bayesian linear regression model in Equation 3.8.

We define the distribution of the trajectory 𝜏 by

𝑝(𝝉𝑗 |𝒘) =

𝑇∏
𝑡=1

𝑝(𝑦𝑡 , 𝑗 |𝒘) ,

=

𝑇∏
𝑡=1

N(𝑦𝑡 , 𝑗 |𝝓𝑇
𝑡 𝒘 , 𝜎

2

𝑦) ,

= N(𝝉𝑗 |𝑨𝒘 , 𝜎2

𝑦𝑰) .

The matrix 𝑨 is given by

𝑨 = [𝝓1 ,𝝓2 , . . . ,𝝓𝑇]𝑇 ∈ ℝ𝑇×𝑀 . (6.3)

Model Learning. The unknown parameters 𝒘 𝑗
can be learned for

example in the simplest case through least squares regression. We derived

this result for static datasets in Equation 3.10. For our time series model,

𝒘
𝑗

𝐿𝑆
= (𝑨𝑇𝑨)−1𝑨𝑇𝝉𝑗 .

The distribution 𝑝(𝝉|𝒘) (without index 𝑗 ) is a conditional probability

distribution that follows from the Bayes rule in Section 2.4, i.e., 𝑝(𝐴|𝐵) =
𝑝(𝐴, 𝐵)/𝑝(𝐵). Our goal is to model a distribution over trajectories 𝑝(𝜏)
which can be obtained by computing the joint distribution 𝑝(𝝉,𝒘) and

marginalizing over the parameters 𝒘. Thus,

𝑝(𝝉) =
∫

𝑝(𝝉|𝒘)𝑝(𝒘)𝑑𝒘.

Note that the model is represented by the prior distribution 𝑝(𝒘).

Remark 6.3.1 For Gaussian distributions this integral can be solved

analytically where

𝑝(𝝉) =

∫
N(𝝉|𝑨𝒘 , 𝜎2

𝑦𝑰) N(𝒘 |𝝁𝑤 |𝑦 ,𝚺𝑤 |𝑦) 𝑑𝒘 , (6.4)

= N(𝝉 | 𝑨𝝁𝑤 |𝑦 , 𝜎
2

𝑦𝑰 + 𝑨𝚺𝑤 |𝑦𝑨
𝑇). (6.5)

The model prior N(𝒘 |𝝁𝑤 |𝑦 ,𝚺𝑤 |𝑦) can be computed from 𝑛 demonstra-

tions or trajectories with

𝝁𝑤 |𝑦 =
1

𝑛

𝑛∑
𝑗=1

𝒘 𝑗
and ,

𝚺𝑤 |𝑦 =
1

𝑛 − 1

𝑛∑
𝑗=1

(𝒘 𝑗 − 𝝁𝑤 |𝑦)(𝒘 𝑗 − 𝝁𝑤 |𝑦)𝑇 .

An important benefit of this probabilistic time series model is that we

can tradeoff the importance of a learned prior model compared to new
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observations. We will now derive probabilistic operations for trajectory
prediction or completion.

6.4 Trajectory Prediction or Completion

Given some new observations denoted by 𝒐 = [𝑜𝑡1 , 𝑜𝑡2 , . . . ], our goal is

to predict a trajectory 𝝉𝑜 that completes the missing observations. An

example is shown in Figure 6.2.

The algorithm implements the following four steps:

1. Compute the basis function matrix at the time steps of the observa-

tions with 𝑨𝑜 = [𝝓1 ,𝝓2 , . . . ]𝑇 .

2. Compute the parameter posterior 𝑝(𝒘𝑜) := N(𝒘𝑜 |𝝁𝑤 |𝑜 ,𝚺𝑤 |𝑜) using

𝝁𝑤 |𝑜 = 𝝁𝑤 |𝑦 + 𝑳(𝒐 − 𝑨𝑜𝝁𝑤 |𝑦) and ,

𝚺𝑤 |𝑜 = 𝚺𝑤 |𝑦 − 𝑳 𝑨𝑜𝚺𝑤 |𝑦 and ,

𝑳 = 𝚺𝑤 |𝑦𝑨
𝑜𝑇(𝜎𝑜𝑰 + 𝑨𝑜𝚺𝑤 |𝑦𝑨

𝑜𝑇)−1 .

3. Predict or complete the observation trajectory through

𝑝(𝝉𝑜) = 𝑁(𝝉𝑜 | 𝑨𝑜𝝁𝑤 |𝑜 , 𝜎
2

𝑦𝑰 + 𝑨𝑜𝚺𝑤 |𝑜𝑨
𝑜𝑇).

In Step 2, the parameter posterior given the observation likelihood and the

prior is computed using the Bayes rule, i.e.,

𝑝(𝒘𝑜) ∝ N(𝒐|𝑨𝑜𝒘 , 𝜎𝑜𝑰)N(𝒘 |𝝁𝑤 |𝑦 ,𝚺𝑤 |𝑦),
:= N(𝒘𝑜 |𝝁𝑤 |𝑜 ,𝚺𝑤 |𝑜) .

In Step 3, the marginal is computed using Equation 6.4.

Note that the observation time steps 𝑡1 , 𝑡2 , . . . just need to be within the

interval [1, 𝑇] and can be used to model missing data, e.g., 𝑡1 = 10, 𝑡2 =

50.
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Figure 6.2: Shown are human right arm

reaching motions to three different tar-

gets denoted by the colored lines. The

blue shaded area and the solid black

line denote the learn prior distribution.

Given three observations denoted by

the black dots, a trajectory is predicted.

This prediction passes through the ob-

servations when 𝜎𝑜 is small and is close

the the prior for large values.

6.5 Exercises

The goal of this exercise is to extend the probabilistic time series model in

Section 6 to multi-dimensional data. Consider a𝐷-dimensional trajectory

of the form 𝝉 = [𝑦1,1 , 𝑦2,1 , . . . , 𝑦𝑇,1 , 𝑦1,2 , 𝑦2,2 , . . . , 𝑦𝑇,𝐷]. Such a ℝ𝑇𝐷

dimensional vector can be generated with

𝝉 = 𝑨𝒘 + 𝝐,

where 𝜖 denotes the noise term. The basis function matrix has the

dimension 𝑨 ∈ ℝ𝑇𝐷 × 𝑀𝐷
and the feature vector 𝒘 ∈ ℝ𝑀𝐷

contains of

𝑀 · 𝐷 unknown parameters.

(a) Define and implement 𝑨 ∈ ℝ𝑇𝐷 × 𝑀𝐷
for 𝐷-dimensional data by

extending the basis function 𝑨 in Equation 6.3 for 𝐷-dimensional

systems.

(b) Implement the probabilistic trajectory model in Equation 6.4 in

MATLAB for the 𝐷 = 2 dimensional dataset.

(c) Visualize the learned prior 𝑝(𝒘). Are the left wrist and right wrist

in the prior correlated?

(d) Predict the complete left wrist trajectory from observing the three

right wrist positions provided in the MATLAB script. Visualize the

result for both wrists.

(e) How does the prediction change with an increasing observation

uncertainty?



Appendix



[1]: Goodfellow et al. (2016), Deep Learn-
ing

Notation A
We follow the International Conference on Learning Representations (ICLR)

attempt to a standardized notation based on the textbook, Deep Learning
[1] available at ICLR Notation.

A.1 Numbers and Arrays

𝑎 A scalar (integer or real)

𝒂 A vector

𝑨 A matrix

A A tensor

𝑰𝑛 Identity matrix with 𝑛 rows and 𝑛 columns

𝑰 Identity matrix with dimensionality implied by context

𝒆(𝑖) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at

position 𝑖

diag(𝒂) A square, diagonal matrix with diagonal entries given

by 𝒂

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

A.2 Sets and Graphs

𝔸 A set

ℝ The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , 𝑛} The set of all integers between 0 and 𝑛

[𝑎, 𝑏] The real interval including 𝑎 and 𝑏

(𝑎, 𝑏] The real interval excluding 𝑎 but including 𝑏

𝔸\𝔹 Set subtraction, i.e., the set containing the elements of 𝔸

that are not in 𝔹

G A graph

𝑃𝑎G(x𝑖) The parents of x𝑖 in G

https://github.com/goodfeli/dlbook_notation
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A.3 Indexing

𝑎𝑖 Element 𝑖 of vector 𝒂, with indexing starting at 1

𝑎−𝑖 All elements of vector 𝒂 except for element 𝑖

𝐴𝑖 , 𝑗 Element 𝑖 , 𝑗 of matrix 𝑨

𝑨𝑖 ,: Row 𝑖 of matrix 𝑨

𝑨:,𝑖 Column 𝑖 of matrix 𝑨

A𝑖 , 𝑗 ,𝑘 Element (𝑖 , 𝑗 , 𝑘) of a 3-D tensor A

A:,:,𝑖 2-D slice of a 3-D tensor

a𝑖 Element 𝑖 of the random vector a

A.4 Calculus

𝑑𝑦

𝑑𝑥
Derivative of 𝑦 with respect to 𝑥

𝜕𝑦

𝜕𝑥
Partial derivative of 𝑦 with respect to 𝑥

∇𝒙𝑦 Gradient of 𝑦 with respect to 𝒙

∇𝑿 𝑦 Matrix derivatives of 𝑦 with respect to 𝑿

∇X𝑦 Tensor containing derivatives of 𝑦 with respect to X
𝜕 𝑓

𝜕𝒙
Jacobian matrix 𝑱 ∈ ℝ𝑚×𝑛

of 𝑓 : ℝ𝑛 → ℝ𝑚

∇2

𝒙 𝑓 (𝒙) or 𝑯( 𝑓 )(𝒙) The Hessian matrix of 𝑓 at input point 𝒙∫
𝑓 (𝒙)𝑑𝒙 Definite integral over the entire domain of 𝒙∫

𝕊

𝑓 (𝒙)𝑑𝒙 Definite integral with respect to 𝒙 over the set 𝕊
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A.5 Probability and Information Theory

𝑃(a) A probability distribution over a discrete variable

𝑝(a) A probability distribution over a continuous variable, or

over a variable whose type has not been specified

a ∼ 𝑃 Random variable a has distribution 𝑃

𝔼x∼𝑃[ 𝑓 (𝑥)] or 𝔼 𝑓 (𝑥) Expectation of 𝑓 (𝑥) with respect to 𝑃(x)

Var( 𝑓 (𝑥)) Variance of 𝑓 (𝑥) under 𝑃(x)

Σ or Cov( 𝑓 (𝑥), 𝑔(𝑥)) Covariance of 𝑓 (𝑥) and 𝑔(𝑥) under 𝑃(x)

𝐻(x) Shannon entropy of the random variable x

𝐷KL(𝑃∥𝑄) Kullback-Leibler divergence of P and Q

N(𝒙;𝝁,𝚺) Gaussian distribution over 𝒙 with mean𝝁 and covariance

𝚺

A.6 Functions

𝑓 : 𝔸 → 𝔹 The function 𝑓 with domain 𝔸 and range 𝔹

𝑓 ◦ 𝑔 Composition of the functions 𝑓 and 𝑔

𝑓 (𝒙;𝜽) A function of 𝒙 parametrized by 𝜽. (Sometimes we write

𝑓 (𝒙) and omit the argument 𝜽 to lighten notation)

log 𝑥 Natural logarithm of 𝑥

𝜎(𝑥) Logistic sigmoid,

1

1 + exp(−𝑥)
𝜁(𝑥) Softplus, log(1 + exp(𝑥))

| |𝒙 | |𝑝 𝐿𝑝 norm of 𝒙

| |𝒙 | | 𝐿2
norm of 𝒙

𝑥+ Positive part of 𝑥, i.e., max(0, 𝑥)

1condition is 1 if the condition is true, 0 otherwise
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A.7 The Greek Alphabet

Character Name Character Name

𝛼 alpha AL-fuh 𝜈 nu NEW

𝛽 beta BAY-tuh 𝜉, Ξ xi KSIGH

𝛾, Γ gamma GAM-muh o omicron OM-uh-CRON

𝛿, Δ delta DEL-tuh 𝜋, Π pi PIE

𝜖 epsilon EP-suh-lon 𝜌 rho ROW

𝜁 zeta ZAY-tuh 𝜎, Σ sigma SIG-muh

𝜂 eta AY-tuh 𝜏 tau TOW (as in cow)

𝜃, Θ theta THAY-tuh 𝜐, Υ upsilon OOP-suh-LON

𝜄 iota eye-OH-tuh 𝜙, Φ phi FEE, or FI (as in hi)

𝜅 kappa KAP-uh 𝜒 chi KI (as in hi)

𝜆, Λ lambda LAM-duh 𝜓, Ψ psi SIGH, or PSIGH

𝜇 mu MEW 𝜔, Ω omega oh-MAY-guh

Capitals shown are the ones that differ from Roman capitals.



[16]: Petersen et al. (2008), ‘The matrix

cookbook’

Mathematical background and
derivations B

In this section, we discuss some basic concepts that will be used in the

course. For many of the derivations we make use of matrix calculus rules. A

comprehensive discussion such rules can be found in The Matrix Cookbook
by [16].

Simple derivation of a matrix pseudo inverse. Let’s assume a simple

system of equations given by, a system matrix 𝑨 ∈ ℝ𝑛 × 𝑚
, a unknown

model vector 𝒙 ∈ ℝ𝑚
and a vector 𝒃 ∈ ℝ𝑚

.

For a symmetric matrix 𝑨 with 𝑛 equals 𝑚, the unknown vector can be

compute as 𝒙 = 𝑨−1𝒃.

For the common case where 𝑛 ≠ 𝑚,

𝑨𝒙 = 𝒃 | 𝑨𝑇 ,

𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 | (𝑨𝑇𝑨)−1 ,

𝒙 = (𝑨𝑇𝑨)−1𝑨𝑇𝒃,

𝒙 = 𝑨†𝒃.

The upper script † (with the latex command \dagger) denotes the pseudo
inverse,

𝑨† = (𝑨𝑇𝑨)−1𝑨𝑇𝒃. (B.1)

B.1 Derivation of the Least Squares Solution

Here we provide a detailed derivation of the least squares objective

in Equation 3.11. Note that the dimensions of the vectors are 𝒚 ∈ ℝ𝑛
,

𝑨 ∈ ℝ𝑛×𝑀
and 𝒘 ∈ ℝ𝑀

is a column vector.

which is given by

𝜕𝐽𝐿𝑆
𝜕𝒘

=
𝜕

𝜕𝒘
{1/2𝜎−2(𝒚 − 𝑨𝒘)𝑇(𝒚 − 𝑨𝒘)},

=
𝜕

𝜕𝒘
{1/2𝜎−2(𝒚𝑇 −𝒘𝑇𝑨𝑇)(𝒚 − 𝑨𝒘)},

= 1/2𝜎−2
𝜕

𝜕𝒘
{𝒚𝑇𝒚 −𝒘𝑇𝑨𝑇𝒚 − 𝒚𝑇𝑨𝒘 +𝒘𝑇𝑨𝑇𝑨𝒘},

= 1/2𝜎−2
𝜕

𝜕𝒘
{𝒚𝑇𝒚 − (𝒚𝑇𝑨𝒘)𝑇 − 𝒚𝑇𝑨𝒘 +𝒘𝑇𝑨𝑇𝑨𝒘},

= 1/2𝜎−2
𝜕

𝜕𝒘
{𝒚𝑇𝒚 − 2𝒚𝑇𝑨𝒘 + 𝑨𝑇𝒘𝒘𝑇𝑨},

since 𝒚𝑇𝑨𝒘 is a scalar (with the dimensions 1 × 𝑛 times 𝑛 × 𝑀 times

𝑀 × 1), it holds that and 𝒚𝑇𝑨𝒘 = (𝒚𝑇𝑨𝒘)𝑇 . The partial derivative can

be computed as

𝜕𝐽𝐿𝑆
𝜕𝒘

= 1/2𝜎−2{−2𝒚𝑇𝑨 + 2𝒘𝑇𝑨𝑇𝑨},
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where we made use of the matrix derivatives 𝜕/𝜕𝒘{𝒚𝑇𝑨𝒘} = 𝒚𝑇𝑨 and

𝜕/𝜕𝒘{𝒘𝑇𝑨𝑇𝑨𝒘} = 2𝒘𝑇𝑨𝑇𝑨.

To compute the least squares minimum, we zero the partial derivative

result and solve for the parameter vector 𝒘, i.e.,

𝜕𝐽𝐿𝑆
𝜕𝒘

= 0,

1/2𝜎−2{−2𝒚𝑇𝑨 + 2𝒘𝑇𝑨𝑇𝑨} = 0 | 𝜎2 ,

−𝒚𝑇𝑨 +𝒘𝑇𝑨𝑇𝑨 = 0 |𝑇 ,
−𝑨𝑇𝒚 + 𝑨𝑇𝑨𝒘 = 0

𝑇 | (𝑨𝑇𝑨)−1 ,

𝒘 = (𝑨𝑇𝑨)−1𝑨𝑇𝒚.

Note that we assume here that 𝑨𝑇𝑨 has full rank and is invertible. The

final result computes the pseudo inverse 𝑨† = (𝑨𝑇𝑨)−1𝑨𝑇 as in the

example above.
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