301 lines
10 KiB
Python
301 lines
10 KiB
Python
"""
|
|
@author: Olivier Sigaud
|
|
|
|
A merge between two sources:
|
|
|
|
* Adaptation of the MountainCar Environment from the "FAReinforcement" library
|
|
of Jose Antonio Martin H. (version 1.0), adapted by 'Tom Schaul, tom@idsia.ch'
|
|
and then modified by Arnaud de Broissia
|
|
|
|
* the gym MountainCar environment
|
|
itself from
|
|
http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp
|
|
permalink: https://perma.cc/6Z2N-PFWC
|
|
"""
|
|
|
|
import math
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
import gym
|
|
from gym import spaces
|
|
from gym.envs.classic_control import utils
|
|
from gym.error import DependencyNotInstalled
|
|
|
|
|
|
class Continuous_MountainCarEnv(gym.Env):
|
|
"""
|
|
### Description
|
|
|
|
The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically
|
|
at the bottom of a sinusoidal valley, with the only possible actions being the accelerations
|
|
that can be applied to the car in either direction. The goal of the MDP is to strategically
|
|
accelerate the car to reach the goal state on top of the right hill. There are two versions
|
|
of the mountain car domain in gym: one with discrete actions and one with continuous.
|
|
This version is the one with continuous actions.
|
|
|
|
This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf)
|
|
|
|
```
|
|
@TECHREPORT{Moore90efficientmemory-based,
|
|
author = {Andrew William Moore},
|
|
title = {Efficient Memory-based Learning for Robot Control},
|
|
institution = {University of Cambridge},
|
|
year = {1990}
|
|
}
|
|
```
|
|
|
|
### Observation Space
|
|
|
|
The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following:
|
|
|
|
| Num | Observation | Min | Max | Unit |
|
|
|-----|--------------------------------------|------|-----|--------------|
|
|
| 0 | position of the car along the x-axis | -Inf | Inf | position (m) |
|
|
| 1 | velocity of the car | -Inf | Inf | position (m) |
|
|
|
|
### Action Space
|
|
|
|
The action is a `ndarray` with shape `(1,)`, representing the directional force applied on the car.
|
|
The action is clipped in the range `[-1,1]` and multiplied by a power of 0.0015.
|
|
|
|
### Transition Dynamics:
|
|
|
|
Given an action, the mountain car follows the following transition dynamics:
|
|
|
|
*velocity<sub>t+1</sub> = velocity<sub>t+1</sub> + force * self.power - 0.0025 * cos(3 * position<sub>t</sub>)*
|
|
|
|
*position<sub>t+1</sub> = position<sub>t</sub> + velocity<sub>t+1</sub>*
|
|
|
|
where force is the action clipped to the range `[-1,1]` and power is a constant 0.0015.
|
|
The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall.
|
|
The position is clipped to the range [-1.2, 0.6] and velocity is clipped to the range [-0.07, 0.07].
|
|
|
|
### Reward
|
|
|
|
A negative reward of *-0.1 * action<sup>2</sup>* is received at each timestep to penalise for
|
|
taking actions of large magnitude. If the mountain car reaches the goal then a positive reward of +100
|
|
is added to the negative reward for that timestep.
|
|
|
|
### Starting State
|
|
|
|
The position of the car is assigned a uniform random value in `[-0.6 , -0.4]`.
|
|
The starting velocity of the car is always assigned to 0.
|
|
|
|
### Episode End
|
|
|
|
The episode ends if either of the following happens:
|
|
1. Termination: The position of the car is greater than or equal to 0.45 (the goal position on top of the right hill)
|
|
2. Truncation: The length of the episode is 999.
|
|
|
|
### Arguments
|
|
|
|
```
|
|
gym.make('MountainCarContinuous-v0')
|
|
```
|
|
|
|
### Version History
|
|
|
|
* v0: Initial versions release (1.0.0)
|
|
"""
|
|
|
|
metadata = {
|
|
"render_modes": ["human", "rgb_array"],
|
|
"render_fps": 30,
|
|
}
|
|
|
|
def __init__(self, render_mode: Optional[str] = None, goal_velocity=0):
|
|
self.min_action = -1.0
|
|
self.max_action = 1.0
|
|
self.min_position = -1.2
|
|
self.max_position = 0.6
|
|
self.max_speed = 0.07
|
|
self.goal_position = (
|
|
0.45 # was 0.5 in gym, 0.45 in Arnaud de Broissia's version
|
|
)
|
|
self.goal_velocity = goal_velocity
|
|
self.power = 0.0015
|
|
|
|
self.low_state = np.array(
|
|
[self.min_position, -self.max_speed], dtype=np.float32
|
|
)
|
|
self.high_state = np.array(
|
|
[self.max_position, self.max_speed], dtype=np.float32
|
|
)
|
|
|
|
self.render_mode = render_mode
|
|
|
|
self.screen_width = 600
|
|
self.screen_height = 400
|
|
self.screen = None
|
|
self.clock = None
|
|
self.isopen = True
|
|
|
|
self.action_space = spaces.Box(
|
|
low=self.min_action, high=self.max_action, shape=(1,), dtype=np.float32
|
|
)
|
|
self.observation_space = spaces.Box(
|
|
low=self.low_state, high=self.high_state, dtype=np.float32
|
|
)
|
|
|
|
def step(self, action: np.ndarray):
|
|
|
|
position = self.state[0]
|
|
velocity = self.state[1]
|
|
force = min(max(action[0], self.min_action), self.max_action)
|
|
|
|
velocity += force * self.power - 0.0025 * math.cos(3 * position)
|
|
if velocity > self.max_speed:
|
|
velocity = self.max_speed
|
|
if velocity < -self.max_speed:
|
|
velocity = -self.max_speed
|
|
position += velocity
|
|
if position > self.max_position:
|
|
position = self.max_position
|
|
if position < self.min_position:
|
|
position = self.min_position
|
|
if position == self.min_position and velocity < 0:
|
|
velocity = 0
|
|
|
|
# Convert a possible numpy bool to a Python bool.
|
|
terminated = bool(
|
|
position >= self.goal_position and velocity >= self.goal_velocity
|
|
)
|
|
|
|
reward = 0
|
|
if terminated:
|
|
reward += 50
|
|
reward -= math.pow(action[0], 2)
|
|
reward -= 1
|
|
|
|
self.state = np.array([position, velocity], dtype=np.float32)
|
|
|
|
if self.render_mode == "human":
|
|
self.render()
|
|
return self.state, reward, terminated, False, {}
|
|
|
|
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
|
|
super().reset(seed=seed)
|
|
# Note that if you use custom reset bounds, it may lead to out-of-bound
|
|
# state/observations.
|
|
low, high = utils.maybe_parse_reset_bounds(options, -0.6, -0.4)
|
|
self.state = np.array([self.np_random.uniform(low=low, high=high), 0])
|
|
|
|
if self.render_mode == "human":
|
|
self.render()
|
|
return np.array(self.state, dtype=np.float32), {}
|
|
|
|
def _height(self, xs):
|
|
return np.sin(3 * xs) * 0.45 + 0.55
|
|
|
|
def render(self):
|
|
if self.render_mode is None:
|
|
gym.logger.warn(
|
|
"You are calling render method without specifying any render mode. "
|
|
"You can specify the render_mode at initialization, "
|
|
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
|
|
)
|
|
return
|
|
|
|
try:
|
|
import pygame
|
|
from pygame import gfxdraw
|
|
except ImportError:
|
|
raise DependencyNotInstalled(
|
|
"pygame is not installed, run `pip install gym[classic_control]`"
|
|
)
|
|
|
|
if self.screen is None:
|
|
pygame.init()
|
|
if self.render_mode == "human":
|
|
pygame.display.init()
|
|
self.screen = pygame.display.set_mode(
|
|
(self.screen_width, self.screen_height)
|
|
)
|
|
else: # mode == "rgb_array":
|
|
self.screen = pygame.Surface((self.screen_width, self.screen_height))
|
|
if self.clock is None:
|
|
self.clock = pygame.time.Clock()
|
|
|
|
world_width = self.max_position - self.min_position
|
|
scale = self.screen_width / world_width
|
|
carwidth = 40
|
|
carheight = 20
|
|
|
|
self.surf = pygame.Surface((self.screen_width, self.screen_height))
|
|
self.surf.fill((255, 255, 255))
|
|
|
|
pos = self.state[0]
|
|
|
|
xs = np.linspace(self.min_position, self.max_position, 100)
|
|
ys = self._height(xs)
|
|
xys = list(zip((xs - self.min_position) * scale, ys * scale))
|
|
|
|
pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0))
|
|
|
|
clearance = 10
|
|
|
|
l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0
|
|
coords = []
|
|
for c in [(l, b), (l, t), (r, t), (r, b)]:
|
|
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
|
|
coords.append(
|
|
(
|
|
c[0] + (pos - self.min_position) * scale,
|
|
c[1] + clearance + self._height(pos) * scale,
|
|
)
|
|
)
|
|
|
|
gfxdraw.aapolygon(self.surf, coords, (0, 0, 0))
|
|
gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0))
|
|
|
|
for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]:
|
|
c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos))
|
|
wheel = (
|
|
int(c[0] + (pos - self.min_position) * scale),
|
|
int(c[1] + clearance + self._height(pos) * scale),
|
|
)
|
|
|
|
gfxdraw.aacircle(
|
|
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
|
|
)
|
|
gfxdraw.filled_circle(
|
|
self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128)
|
|
)
|
|
|
|
flagx = int((self.goal_position - self.min_position) * scale)
|
|
flagy1 = int(self._height(self.goal_position) * scale)
|
|
flagy2 = flagy1 + 50
|
|
gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0))
|
|
|
|
gfxdraw.aapolygon(
|
|
self.surf,
|
|
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
|
|
(204, 204, 0),
|
|
)
|
|
gfxdraw.filled_polygon(
|
|
self.surf,
|
|
[(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)],
|
|
(204, 204, 0),
|
|
)
|
|
|
|
self.surf = pygame.transform.flip(self.surf, False, True)
|
|
self.screen.blit(self.surf, (0, 0))
|
|
if self.render_mode == "human":
|
|
pygame.event.pump()
|
|
self.clock.tick(self.metadata["render_fps"])
|
|
pygame.display.flip()
|
|
|
|
elif self.render_mode == "rgb_array":
|
|
return np.transpose(
|
|
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
|
|
)
|
|
|
|
def close(self):
|
|
if self.screen is not None:
|
|
import pygame
|
|
|
|
pygame.display.quit()
|
|
pygame.quit()
|
|
self.isopen = False |