from BayesianOptimization.BOwithGym import BayesianOptimization import numpy as np import matplotlib.pyplot as plt # from ToyTask.MountainCarGym import Continuous_MountainCarEnv from ToyTask.Pendulum import PendulumEnv import warnings from sklearn.exceptions import ConvergenceWarning warnings.filterwarnings("ignore", category=ConvergenceWarning) # BO parameters env = PendulumEnv() nr_steps = 100 acquisition_fun = 'ei' iteration_steps = 100 nr_runs = 100 # storage arrays finished_store = np.zeros((1, nr_runs)) best_policy = np.zeros((nr_steps, nr_runs)) reward_store = np.zeros((iteration_steps, nr_runs)) # post-processing def post_processing(finished, policy, reward): finish_mean = np.nanmean(finished) finish_std = np.nanstd(finished) policy_mean = np.mean(policy, axis=1) policy_std = np.std(policy, axis=1) reward_mean = np.mean(reward, axis=1) reward_std = np.std(reward, axis=1) return finish_mean, finish_std, policy_mean, policy_std, reward_mean, reward_std # plot functions def plot_policy(mean, std, fin_mean, fin_std): x = np.linspace(0, mean.shape[0], mean.shape[0]) plt.plot(x, mean) plt.fill_between( x, mean - 1.96 * std, mean + 1.96 * std, alpha=0.5 ) y = np.linspace(-2, 2, 50) plt.vlines(fin_mean, -2, 2, colors='red') plt.fill_betweenx( y, fin_mean - 1.96 * fin_std, fin_mean + 1.96 * fin_std, alpha=0.5, ) plt.show() def plot_reward(mean, std): eps = np.linspace(0, mean.shape[0], mean.shape[0]) plt.plot(eps, mean) plt.fill_between( eps, mean - 1.96 * std, mean + 1.96 * std, alpha=0.5 ) plt.show() # main def main(): global finished_store, best_policy, reward_store bo = BayesianOptimization(env, nr_steps, acq=acquisition_fun) for i in range(nr_runs): print('Iteration:', str(i)) bo.env_seed = int(np.random.randint(1, 2147483647, 1)[0]) bo.initialize() for j in range(iteration_steps): x_next = bo.next_observation() bo.eval_new_observation(x_next) finished = bo.get_best_result(plotter=False) finished_store[:, i] = finished best_policy[:, i] = bo.policy_model.trajectory.T reward_store[:, i] = bo.best_reward.T print(reward_store[-1, i]) finish_mean, finish_std, policy_mean, policy_std, reward_mean, reward_std = post_processing(finished_store, best_policy, reward_store) plot_policy(policy_mean, policy_std, finish_mean, finish_std) plot_reward(reward_mean, reward_std) if __name__ == '__main__': main()