import numpy as np import matplotlib.pyplot as plt import os def plot_csv(paths, x_axis, y_axis): for path_ in paths: data = np.genfromtxt(path_, delimiter=',', skip_header=0, dtype=float) mean = np.mean(data, axis=1) std = np.std(data, axis=1) x = np.linspace(0, mean.shape[0], mean.shape[0]) # Extract the first part of the filename and use it as a label label = os.path.basename(path_).split('-')[0:5] label = f"{label[1]}," \ f" {label[2]}," \ f" {label[3].replace('_', '.') if label[3] != '' else 'base'}," \ f" nrbfs = {int(label[4])}" plt.plot(x, mean, label=label) plt.fill_between( x, mean - 1.96 * std, mean + 1.96 * std, alpha=0.5 ) plt.xlabel(x_axis) plt.xlim([0, mean.shape[0]]) plt.ylabel(y_axis) plt.grid(True) plt.legend(loc="upper left") plt.show() if __name__ == '__main__': filenames = ['cp-e150r10-bf15-base/cp-ei-random-1_0-15-1690282051_2959082.csv', 'cp-e150r10-bf15-noshaping/cp-pei-random-0_95-15-1690276946_1944933.csv', 'cp-e150r10-bf15-noshaping/cp-pei-regular-25_0-15-1690290021_6843266.csv', 'cp-e150r10-bf15-noshaping/cp-pei-improvement-0_1-15-1690292664_0382216.csv', ] home_dir = os.path.expanduser('~') file_path = os.path.join(home_dir, 'Documents/IntRLResults/CP-Results') paths = [os.path.join(file_path, filename) for filename in filenames] plot_csv(paths, 'Episodes', 'Reward') # # filenames2 = ['mc-ei-random-1_0-10-1685708208_6402516.csv', # 'mc-pi-random-1_0-10-1685709168_7113624.csv', # 'mc-cb-random-1_0-10-1685714487_4603446.csv'] # # paths2 = [os.path.join(file_path, filename) for filename in filenames2] # plot_csv(paths2, 'Episodes', 'Reward')