import numpy as np import matplotlib.pyplot as plt # Define the Gaussian distribution mu, sigma = 0, 5 # High variance gaussian = np.random.normal(mu, sigma, 1000000) # Generate a lot of samples # Rejection sampling gaussian = gaussian[(gaussian > -1) & (gaussian < 1)] # Generate uniform distribution uniform = np.random.uniform(-1, 1, len(gaussian)) # Same number of samples as the Gaussian # Plot the distributions plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.hist(gaussian, bins=30, density=True, alpha=0.6, color='g') plt.title('Gaussian Rejection Sampling') plt.subplot(1, 2, 2) plt.hist(uniform, bins=30, density=True, alpha=0.6, color='b') plt.title('Uniform Distribution') plt.show()