diff --git a/AcquistionFunctions/PreferenceExpectedImprovement.py b/AcquistionFunctions/PreferenceExpectedImprovement.py index 136fde8..b69595c 100644 --- a/AcquistionFunctions/PreferenceExpectedImprovement.py +++ b/AcquistionFunctions/PreferenceExpectedImprovement.py @@ -12,11 +12,9 @@ class PreferenceExpectedImprovement: self.upper_bound = upper_bound self.lower_bound = lower_bound - self.initial_variance = 5.0 - self.user_model = None self.proposal_model_mean = np.array((nr_dims, 1)) - self.proposal_model_covariance = np.diag(np.ones((nr_dims, )) * self.initial_variance) + self.proposal_model_covariance = np.diag(np.ones((nr_dims, )) * 5) self.rng = np.random.default_rng(seed=seed) @@ -24,37 +22,20 @@ class PreferenceExpectedImprovement: pass def rejection_sampling(self): - samples = np.empty((0, self.nr_dims)) - while samples.shape[0] < self.nr_samples: - # sample from the multi variate gaussian distribution - sample = self.rng.multivariate_normal( - self.proposal_model_mean, - self.proposal_model_covariance - ) - - # check if the sample is within the bounds - if np.all(sample >= self.lower_bound) and np.all(sample <= self.upper_bound): - samples = np.append(samples, [sample], axis=0) - - return samples + samples = np.empty((self.nr_samples, self.nr_dims)) + i = 0 + while i < self.nr_samples: + pass def expected_improvement(self): pass - def update_user_preference_model(self, preferred_input, preference_array): - # Update mean to reflect preferred input - self.user_model_mean = preferred_input + def update_user_preference_model(self): + pass - initial_variance = np.ones((self.nr_dims, )) * self.initial_variance - reduced_variance = initial_variance / 10.0 - variances = np.where(preference_array, reduced_variance, initial_variance) - self.user_model_covariance = np.diag(variances) - - def update_proposal_model(self, alpha=0.5): - # Update proposal model to be a weighted average of the current proposal model and the user model - self.proposal_model_mean = alpha * self.proposal_model_mean + (1 - alpha) * self.user_model_mean - self.proposal_model_covariance = alpha * self.proposal_model_covariance + (1 - alpha) * self.user_model_covariance + def update_proposal_model(self): + pass if __name__ == '__main__':