ActiveBOToytask/BayesianOptimization/BOtest_for_Preference.py

188 lines
6.6 KiB
Python
Raw Normal View History

2023-07-05 11:24:03 +00:00
import numpy as np
from scipy.optimize import minimize
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from AcquistionFunctions.ExpectedImprovementwithPreference import expected_improvement
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.filterwarnings("ignore", category=ConvergenceWarning)
# Define the Branin function
def branin(X):
x, y = X
result = (y - (5.1 / (4*np.pi**2)) * x**2 +
5 * x / np.pi - 6)**2 + 10 * (1 - 1 / (8*np.pi)) * np.cos(x) + 10
return result
# Define the Rosenbrock function
def rosenbrock(X):
x, y = X
return (1 - x)**2 + 100 * (y - x**2)**2
# Function to plot the Test function and the samples
def plot_function_and_samples(func, X_samples, Y_samples, iteration):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Create a grid of points
x = np.linspace(-2, 2, 100)
y = np.linspace(-1, 3, 100)
X, Y = np.meshgrid(x, y)
Z = func([X, Y])
# Plot the function
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='b', alpha=0.2, linewidth=0)
# Plot the samples
ax.scatter(X_samples[:, 0], X_samples[:, 1], Y_samples, color='r', s=50)
ax.set_title(f"Iteration {iteration}")
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('f(X, Y)')
ax.view_init(elev=30, azim=-30)
plt.show()
def bayesian_optimization(n_iter, change_to_gaussian_after=10):
# # The bounds of the function
# bounds = np.array([[-5.0, 10.0], [0.0, 15.0]]) #brainin
bounds = np.array([[-2.0, 2.0], [-1.0, 3.0]]) #rosenbrock
# Initial samples
X_init = np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], size=(2, len(bounds)))
Y_init = np.array([[rosenbrock(x)] for x in X_init])
# Gaussian process with Matérn kernel as surrogate model
m52 = Matern(length_scale=[1.0, 1.0], nu=2.5)
gp = GaussianProcessRegressor(kernel=m52, alpha=1e-5)
# Boolean array indicating which dimensions should be sampled from a Gaussian distribution
use_gaussian = np.array([False, False])
# Means and variances for the Gaussian distributions
means = np.array([0.0, 0.0])
variances = np.array([(b[1] - b[0]) * 0.25 for b in bounds])**2
# Array to store the best result from each iteration
best_results = np.empty(n_iter)
# Bayesian optimization loop
for i_ in range(n_iter):
# Update Gaussian process with existing samples
gp.fit(X_init, Y_init)
# Obtain next sampling point from the acquisition function (expected_improvement)
n_samples = 1000
X_next = expected_improvement(X_init, n_samples, gp, use_gaussian, means, variances)
# Obtain next noisy sample from the objective function
Y_next = rosenbrock(X_next)
# Add sample to previous samples
X_init = np.vstack((X_init, X_next))
Y_init = np.vstack((Y_init, Y_next))
# After change_to_gaussian_after iterations, start using Gaussian distribution for sampling
if i_ >= change_to_gaussian_after:
use_gaussian = np.array([True, True])
# Update means with the mean of the best 5 results
best_5_idx = np.argsort(Y_init, axis=0)[:5].flatten()
means = np.mean(X_init[best_5_idx], axis=0)
# Reduce variances by 5 percent
variances *= 0.95
# Store the best result from this iteration
best_results[i_] = np.min(Y_init)
return best_results
# Run the benchmarking test and store the results
results_with_gaussian = np.empty((50, 20))
results_without_gaussian = np.empty((50, 20))
for i in range(50):
results_with_gaussian[i, :] = bayesian_optimization(20, 10)
results_without_gaussian[i, :] = bayesian_optimization(20, 50)
# Compute the mean and standard deviation of the results
mean_with_gaussian = np.mean(results_with_gaussian, axis=0)
std_with_gaussian = np.std(results_with_gaussian, axis=0)
mean_without_gaussian = np.mean(results_without_gaussian, axis=0)
std_without_gaussian = np.std(results_without_gaussian, axis=0)
# Plot the results
plt.figure(figsize=(10, 6))
plt.plot(mean_with_gaussian, label='With Gaussian after 10 iterations')
plt.fill_between(range(20), mean_with_gaussian-std_with_gaussian, mean_with_gaussian+std_with_gaussian, alpha=0.2)
plt.plot(mean_without_gaussian, label='Without Gaussian')
plt.fill_between(range(20), mean_without_gaussian-std_without_gaussian, mean_without_gaussian+std_without_gaussian, alpha=0.2)
plt.xlabel('Iteration')
plt.ylabel('Best Result')
plt.legend()
plt.show()
#
# # Initial samples
# X_init = np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], size=(2, len(bounds)))
# # Y_init = np.array([[branin(x)] for x in X_init])
# Y_init = np.array([[rosenbrock(x)] for x in X_init])
#
# # Gaussian process with Matérn kernel as surrogate model
# m52 = Matern(length_scale=[1.0, 1.0], nu=2.5)
# gp = GaussianProcessRegressor(kernel=m52, alpha=1e-5)
#
# # Number of iterations
# n_iter = 50
#
# # Boolean array indicating which dimensions should be sampled from a Gaussian distribution
# use_gaussian = np.array([False, False])
#
# # Means and variances for the Gaussian distributions
# means = np.array([0.0, 0.0])
# variances = np.array([(b[1] - b[0]) * 0.25 for b in bounds])**2
#
# # Bayesian optimization loop
# for i in range(n_iter):
# # Update Gaussian process with existing samples
# gp.fit(X_init, Y_init)
#
# # Obtain next sampling point from the acquisition function (expected_improvement)
# n_samples = 1000
# X_next = expected_improvement(X_init, n_samples, gp, use_gaussian, means, variances)
#
# # Obtain next noisy sample from the objective function
# # Y_next = branin(X_next)
# Y_next = rosenbrock(X_next)
#
# # Add sample to previous samples
# X_init = np.vstack((X_init, X_next))
# Y_init = np.vstack((Y_init, Y_next))
#
#
# # After 10 iterations, start using Gaussian distribution for sampling
# if i >= 29:
# use_gaussian = np.array([True, True])
# # Update means with the mean of the best 5 results
# best_5_idx = np.argsort(Y_init, axis=0)[:5].flatten()
# means = np.mean(X_init[best_5_idx], axis=0)
# # Reduce variances by 10 percent
# variances *= 0.9
#
# # Plot the function and the samples
# # plot_function_and_samples(rosenbrock, X_init, Y_init, i)
#
# print("Final samples: ", X_init)
# print("Final function values: ", Y_init)
# print(f"Minimum function values: {np.min(Y_init)}, idx: {np.argmin(Y_init)}")