ActiveBOToytask/BayesianOptimization/BayesianOptimization.py

128 lines
3.8 KiB
Python
Raw Normal View History

2023-02-02 17:54:09 +00:00
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern
from PolicyModel.GaussianModel import GaussianPolicy
from ToyTask.MountainCar import MountainCarEnv
from AcquistionFunctions.ExpectedImprovement import ExpectedImprovement
import matplotlib.pyplot as plt
from warnings import catch_warnings, simplefilter
2023-04-19 15:01:16 +00:00
2023-02-02 17:54:09 +00:00
class BayesianOptimization:
def __init__(self, env, nr_init=3, acq='ei', nr_weights=8, policy_seed=None):
self.env = env
self.nr_init = nr_init
self.acq = acq
self.X = None
self.Y = None
self.gp = None
self.episode = 0
self.best_reward = np.empty((1, 1))
self.nr_policy_weights = nr_weights
self.nr_steps = env.max_step
self.policy_seed = policy_seed
self.lowerb = -1.0
self.upperb = 1.0
self.policy_model = GaussianPolicy(self.nr_policy_weights,
self.nr_steps,
self.policy_seed,
self.lowerb,
self.upperb)
self.nr_test = 100
def initialize(self):
self.X = np.zeros((self.nr_init, self.nr_policy_weights))
self.Y = np.zeros((self.nr_init, 1))
for i in range(self.nr_init):
self.policy_model.random_policy()
self.X[i, :] = self.policy_model.weights.T
policy = self.policy_model.policy_rollout()
reward, step_count = self.env.runner(policy)
self.Y[i] = reward
self.gp = GaussianProcessRegressor(Matern(nu=1.5))
self.gp.fit(self.X, self.Y)
def next_observation(self):
if self.acq == 'ei':
x_next = ExpectedImprovement(self.gp,
self.X,
self.nr_test,
self.nr_policy_weights,
seed=self.policy_seed,
lower=self.lowerb,
upper=self.upperb)
return x_next
else:
raise NotImplementedError
def eval_new_observation(self, x_next):
self.policy_model.weights = x_next
policy = self.policy_model.policy_rollout()
reward, _ = self.env.runner(policy)
self.X = np.vstack((self.X, x_next))
self.Y = np.vstack((self.Y, reward))
self.gp.fit(self.X, self.Y)
if self.episode == 0:
self.best_reward[0] = max(self.Y)
else:
self.best_reward = np.vstack((self.best_reward, max(self.Y)))
self.episode += 1
def plot(self):
if self.nr_policy_weights == 1:
plt.scatter(self.X, self.Y)
x_plot = np.linspace(self.lowerb, self.upperb, 100).reshape(-1, 1)
with catch_warnings():
simplefilter('ignore')
y_plot, y_sigma = self.gp.predict(x_plot, return_std=True)
plt.plot(x_plot, y_plot)
plt.fill_between(
x_plot.ravel(),
y_plot - 1.96 * y_sigma,
y_plot + 1.96 * y_sigma,
alpha=0.5
)
plt.show()
def plot_reward(self):
epsiodes = np.linspace(0, self.episode, self.episode)
plt.plot(epsiodes, self.best_reward)
plt.show()
def main():
max_step = 50
car = MountainCarEnv(max_step)
bo = BayesianOptimization(car)
bo.initialize()
iteration_steps = 100
for i in range(iteration_steps):
x_next = bo.next_observation()
bo.eval_new_observation(x_next)
bo.plot_reward()
bo.policy_model.plot_policy()
if __name__ == "__main__":
main()