2023-07-12 11:52:06 +00:00
|
|
|
import numpy as np
|
2023-07-24 16:47:54 +00:00
|
|
|
from scipy.stats import norm, multivariate_normal
|
|
|
|
import matplotlib.pyplot as plt
|
2023-07-12 11:52:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PreferenceExpectedImprovement:
|
2023-07-24 16:47:54 +00:00
|
|
|
def __init__(self, nr_samples, nr_dims, nr_likelihood_samples, lower_bound, upper_bound, init_var, seed=None):
|
2023-07-12 12:34:15 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
self.nr_samples = int(nr_samples)
|
2023-07-12 13:00:13 +00:00
|
|
|
self.nr_dims = nr_dims
|
2023-07-24 16:47:54 +00:00
|
|
|
self.nr_likelihood_samples = int(nr_likelihood_samples)
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
# check if upper_bound and lower_bound are numpy arrays of shape (nr_dims, 1) or (nr_dims,) or if they are float
|
2023-07-12 12:34:15 +00:00
|
|
|
self.upper_bound = upper_bound
|
|
|
|
self.lower_bound = lower_bound
|
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
self.initial_variance = init_var
|
2023-07-13 08:48:46 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
self.proposal_mean = np.zeros((nr_dims, 1))
|
|
|
|
self.proposal_cov = np.diag(np.ones((nr_dims,)) * self.initial_variance)
|
2023-07-12 13:00:13 +00:00
|
|
|
|
|
|
|
self.rng = np.random.default_rng(seed=seed)
|
2023-07-12 12:34:15 +00:00
|
|
|
|
2023-07-12 11:52:06 +00:00
|
|
|
def rejection_sampling(self):
|
2023-07-13 08:48:46 +00:00
|
|
|
samples = np.empty((0, self.nr_dims))
|
|
|
|
while samples.shape[0] < self.nr_samples:
|
|
|
|
# sample from the multi variate gaussian distribution
|
2023-07-24 16:47:54 +00:00
|
|
|
sample = np.zeros((1, self.nr_dims))
|
|
|
|
for i in range(self.nr_dims):
|
|
|
|
check = False
|
|
|
|
while not check:
|
|
|
|
sample[0, i] = self.rng.normal(self.proposal_mean[i], self.proposal_cov[i, i])
|
|
|
|
if self.lower_bound <= sample[0, i] <= self.upper_bound:
|
|
|
|
check = True
|
|
|
|
|
|
|
|
samples = np.append(samples, sample, axis=0)
|
|
|
|
# sample = self.rng.multivariate_normal(
|
|
|
|
# mean,
|
|
|
|
# self.proposal_cov
|
|
|
|
# )
|
|
|
|
#
|
|
|
|
# # check if the sample is within the bounds
|
|
|
|
# if np.all(sample >= self.lower_bound) and np.all(sample <= self.upper_bound):
|
|
|
|
# samples = np.append(samples, [sample], axis=0)
|
2023-07-13 08:48:46 +00:00
|
|
|
|
|
|
|
return samples
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
def expected_improvement(self, gp, X, kappa=0.01):
|
|
|
|
X_sample = self.rejection_sampling()
|
2023-07-12 11:52:06 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
mu_sample, sigma_sample = gp.predict(X_sample, return_std=True)
|
|
|
|
sigma_sample = sigma_sample.reshape(-1, 1)
|
2023-07-12 11:52:06 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
mu = gp.predict(X)
|
|
|
|
mu_best = np.max(mu)
|
2023-07-13 08:48:10 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
with np.errstate(divide='warn'):
|
|
|
|
imp = mu_sample - mu_best - kappa
|
|
|
|
imp = imp.reshape(-1, 1)
|
|
|
|
z = imp / sigma_sample
|
|
|
|
ei = imp * norm.cdf(z) + sigma_sample * norm.pdf(z)
|
|
|
|
ei[sigma_sample == 0.0] = 0.0
|
2023-07-13 08:48:46 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
idx = np.argmax(ei)
|
|
|
|
x_next = X_sample[idx, :]
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
return x_next
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
def likelihood(self, preference):
|
|
|
|
covariance_diag = np.ones((self.nr_dims,)) * self.initial_variance
|
2023-08-17 14:14:58 +00:00
|
|
|
covariance_diag[preference] = 0.05
|
2023-07-24 16:47:54 +00:00
|
|
|
|
|
|
|
covariance = np.diag(covariance_diag)
|
|
|
|
|
|
|
|
return covariance
|
|
|
|
|
|
|
|
def update_proposal_model(self, preference_mean, preference_bool):
|
|
|
|
|
|
|
|
covariance_diag = np.ones((self.nr_dims,)) * self.initial_variance
|
2023-08-17 14:14:58 +00:00
|
|
|
covariance_diag[preference_bool] = 0.05
|
2023-07-24 16:47:54 +00:00
|
|
|
|
|
|
|
preference_cov = np.diag(covariance_diag)
|
|
|
|
|
|
|
|
preference_mean = preference_mean.reshape(-1, 1)
|
|
|
|
|
|
|
|
posterior_mean = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov)).dot(np.linalg.inv(self.proposal_cov).dot(self.proposal_mean) + np.linalg.inv(preference_cov).dot(preference_mean))
|
|
|
|
posterior_cov = np.linalg.inv(np.linalg.inv(self.proposal_cov) + np.linalg.inv(preference_cov))
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
print(posterior_mean, posterior_cov)
|
2023-07-13 08:48:46 +00:00
|
|
|
|
2023-07-24 16:47:54 +00:00
|
|
|
self.proposal_mean = posterior_mean
|
|
|
|
self.proposal_cov = posterior_cov
|
|
|
|
|
|
|
|
def plot_2D(self, mean, cov):
|
|
|
|
print(mean.shape, cov.shape)
|
|
|
|
if mean.shape == (2, 1):
|
|
|
|
mean = mean.squeeze()
|
|
|
|
|
|
|
|
gaussian = multivariate_normal(mean, cov)
|
|
|
|
x = np.random.uniform(self.lower_bound, self.upper_bound, (self.nr_likelihood_samples, self.nr_dims))
|
|
|
|
|
|
|
|
pdf = gaussian.pdf(x)
|
|
|
|
pdf = pdf / pdf.sum()
|
|
|
|
|
|
|
|
plt.scatter(x[:, 0], x[:, 1], c=pdf, cmap='viridis')
|
|
|
|
|
|
|
|
# Add a color bar
|
|
|
|
plt.colorbar(label='PDF value')
|
|
|
|
|
|
|
|
# Add labels
|
|
|
|
plt.xlabel('x1')
|
|
|
|
plt.ylabel('x2')
|
|
|
|
|
|
|
|
# Show the plot
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2023-08-17 14:14:58 +00:00
|
|
|
# acquisition = PreferenceExpectedImprovement(10, 10, 10e4, -1.0, 1.0, 5.0)
|
|
|
|
# sample_res = acquisition.rejection_sampling()
|
|
|
|
# print(f"finished: {sample_res}")
|
|
|
|
acquisition = PreferenceExpectedImprovement(10, 2, 10e4, -1.0, 1.0, 10.0)
|
|
|
|
mean_ = np.array([0.5, 0.23])
|
|
|
|
preference_ = [False, True]
|
|
|
|
likelihood_cov = acquisition.likelihood(preference_)
|
|
|
|
|
|
|
|
acquisition.plot_2D(acquisition.proposal_mean, acquisition.proposal_cov)
|
|
|
|
acquisition.plot_2D(mean_, likelihood_cov)
|
|
|
|
|
|
|
|
acquisition.update_proposal_model(mean_, preference_)
|
|
|
|
acquisition.plot_2D(acquisition.proposal_mean, acquisition.proposal_cov)
|
|
|
|
|
|
|
|
mean2 = np.array([0.33, 0.24])
|
|
|
|
preference2 = [True, False]
|
|
|
|
likelihood_cov2 = acquisition.likelihood(preference2)
|
|
|
|
|
|
|
|
acquisition.plot_2D(mean2, likelihood_cov2)
|
|
|
|
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.plot_2D(acquisition.proposal_mean, acquisition.proposal_cov)
|
|
|
|
|
|
|
|
mean2 = np.array([-0.66, -0.5])
|
|
|
|
preference2 = [False, False]
|
|
|
|
likelihood_cov2 = acquisition.likelihood(preference2)
|
|
|
|
|
|
|
|
acquisition.plot_2D(mean2, likelihood_cov2)
|
|
|
|
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.update_proposal_model(mean2, preference2)
|
|
|
|
acquisition.plot_2D(acquisition.proposal_mean, acquisition.proposal_cov)
|