2023-07-12 11:52:06 +00:00
|
|
|
import numpy as np
|
|
|
|
from scipy.stats import norm
|
|
|
|
|
|
|
|
|
|
|
|
class PreferenceExpectedImprovement:
|
2023-07-12 13:00:13 +00:00
|
|
|
def __init__(self, nr_samples, nr_dims, lower_bound, upper_bound, seed=None):
|
2023-07-12 12:34:15 +00:00
|
|
|
|
|
|
|
self.nr_samples = nr_samples
|
2023-07-12 13:00:13 +00:00
|
|
|
self.nr_dims = nr_dims
|
|
|
|
# check if upper_bound and lower_bound are numpy arrays of shape (nr_dims, 1) or (nr_dims,) or if they are floats
|
|
|
|
|
2023-07-12 12:34:15 +00:00
|
|
|
self.upper_bound = upper_bound
|
|
|
|
self.lower_bound = lower_bound
|
|
|
|
|
|
|
|
self.user_model = None
|
2023-07-12 13:00:13 +00:00
|
|
|
self.proposal_model_mean = np.array((nr_dims, 1))
|
2023-07-13 08:48:18 +00:00
|
|
|
self.proposal_model_covariance = np.diag(np.ones((nr_dims, )) * 5)
|
2023-07-12 13:00:13 +00:00
|
|
|
|
|
|
|
self.rng = np.random.default_rng(seed=seed)
|
2023-07-12 12:34:15 +00:00
|
|
|
|
|
|
|
def initialize(self):
|
2023-07-12 11:52:06 +00:00
|
|
|
pass
|
|
|
|
|
|
|
|
def rejection_sampling(self):
|
2023-07-13 08:48:18 +00:00
|
|
|
samples = np.empty((self.nr_samples, self.nr_dims))
|
|
|
|
i = 0
|
|
|
|
while i < self.nr_samples:
|
|
|
|
pass
|
2023-07-12 13:00:13 +00:00
|
|
|
|
2023-07-12 11:52:06 +00:00
|
|
|
|
|
|
|
def expected_improvement(self):
|
|
|
|
pass
|
|
|
|
|
2023-07-13 08:48:18 +00:00
|
|
|
def update_user_preference_model(self):
|
|
|
|
pass
|
2023-07-13 08:48:10 +00:00
|
|
|
|
2023-07-13 08:48:18 +00:00
|
|
|
def update_proposal_model(self):
|
|
|
|
pass
|
2023-07-12 13:00:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
acquisition = PreferenceExpectedImprovement(10, 2, -1.0, 1.0)
|
|
|
|
|